Duplicate genes show significantly fewer interactions than singleton genes, and functionally similar duplicates can exhibit dissimilar profiles because common interactions are ‘hidden' due to buffering. Genetic interaction profiles provide insights into evolutionary mechanisms of duplicate retention by distinguishing duplicates under dosage selection from those retained because of some divergence in function. The genetic interactions of duplicate genes evolve in an extremely asymmetric way and the directionality of this asymmetry correlates well with other evolutionary properties of duplicate genes. Genetic interaction profiles can be used to elucidate the divergent function of specific duplicate pairs., Gene duplication and divergence serves as a primary source for new genes and new functions, and as such has broad implications on the evolutionary process. Duplicate genes within S. cerevisiae have been shown to retain a high degree of similarity with regard to many of their functional properties (Papp et al, 2004; Guan et al, 2007; Wapinski et al, 2007; Musso et al, 2008), and perturbation of duplicate genes has been shown to result in smaller fitness defects than singleton genes (Gu et al, 2003; DeLuna et al, 2008; Dean et al, 2008; Musso et al, 2008). Individual genetic interactions between pairs of genes and profiles of such interactions across the entire genome provide a new context in which to examine the properties of duplicate compensation. In this study we use the most recent and comprehensive set of genetic interactions in yeast produced to date (Costanzo et al, 2010) to address questions of duplicate retention and redundancy. We show that the ability for duplicate genes to buffer the deletion of a partner has three main consequences. First it agrees with previous work demonstrating that a high proportion of duplicate pairs are synthetic lethal, a classic indication of the ability to buffer one another functionally (DeLuna et al, 2008; Dean et al, 2008; Musso et al, 2008). Second, it reduces the number of genetic interactions observed between duplicate genes and the rest of the genome by masking interactions relating to common function from experimental detection. Third, this buffering of common interactions serves to reduce profile similarity in spite of common function (Figure 1). The compensatory ability of functionally similar duplicates buffers genetic interactions related to their common function (reducing the number of genetic interactions overall), while allowing the measurement of interactions related to any divergent function. Thus, even functionally similar duplicates may have dissimilar genetic interaction profiles. As previously surmised (Ihmels et al, 2007), duplicate genes under selection for dosage amplification have differing profile characteristics. We show that dosage-mediated duplicates have much higher genetic interaction profile similarity than do other duplicate pairs. Furthermore, we show in a comparison with local neighbors on a protein–protein interaction (PPI) network, that although dosage-mediated duplicates more often have higher similarity to each other than they do to their neighbors, the reverse is true for duplicates in general. That is, slightly divergent duplicate genes more often exhibit a higher similarity with a common neighbor on the PPI network than they do with each other, and that observation is consistent with the idea that common interactions are buffered while interactions corresponding to divergent functions are observed. We then asked whether duplicates' genetic interactions that are not buffered appear in a symmetric or an asymmetric fashion. Previous work has established asymmetric patterns with regard to PPI degree (Wagner, 2002; He and Zhang, 2005), sequence divergence (Conant and Wagner, 2003; Zhang et al, 2003; Kellis et al, 2004; Scannell and Wolfe, 2008) and expression patterns (Gu et al, 2002b; Tirosh and Barkai, 2007). Although genetic interactions are further removed from mechanism than protein–protein interactions, for example, they do offer a more direct measurement of functional consequence and, thus, may give a better indication of the functional differences between a duplicate pair. We found that duplicates exhibit a strikingly asymmetric pattern of genetic interactions, with the ratio of interactions between sisters commonly exceeding 7:1 (Figure 4A). The observations differ significantly from random simulations in which genetic interactions were redistributed between sisters with equal probability (Figure 4A). Moreover, the directionality of this interaction asymmetry agrees with other physiological properties of duplicate pairs. For example, the sister with more genetic interactions also tends to have more protein–protein interactions and also tends to evolve at a slower rate (Figure 4B). Genetic interaction degree and profiles can be used to understand the functional divergence of particular duplicates pairs. As a case example, we consider the whole-genome-duplication pair CIK1–VIK1. Each of these genes encode proteins that form distinct heterodimeric complexes with the microtubule motor protein Kar3 (Manning et al, 1999). Although each of these proteins depend on a direct physical interaction with Kar3, Cik1 has a much higher profile similarity to Kar3 than does Vik1 (r=0.5 and r=0.3, respectively). Consistent with its higher similarity, Δcik1 and Δkar3 exhibit several similar phenotypes, including abnormally short spindles, chromosome loss and delayed cell cycle progression (Page et al, 1994; Manning et al, 1999). In contrast, a Δvik1 mutant strain exhibits no overt phenotype (Manning et al, 1999)., The characterization of functional redundancy and divergence between duplicate genes is an important step in understanding the evolution of genetic systems. Large-scale genetic network analysis in Saccharomyces cerevisiae provides a powerful perspective for addressing these questions through quantitative measurements of genetic interactions between pairs of duplicated genes, and more generally, through the study of genome-wide genetic interaction profiles associated with duplicated genes. We show that duplicate genes exhibit fewer genetic interactions than other genes because they tend to buffer one another functionally, whereas observed interactions are non-overlapping and reflect their divergent roles. We also show that duplicate gene pairs are highly imbalanced in their number of genetic interactions with other genes, a pattern that appears to result from asymmetric evolution, such that one duplicate evolves or degrades faster than the other and often becomes functionally or conditionally specialized. The differences in genetic interactions are predictive of differences in several other evolutionary and physiological properties of duplicate pairs.