1. NetExtractor: Extracting a Cerebellar Tissue Gene Regulatory Network Using Differentially Expressed High Mutual Information Binary RNA Profiles
- Author
-
F. Alex Feltus, Yuqing Hang, Benjamin T. Shealy, Allison R Hickman, Benafsh Husain, and Karan Sapra
- Subjects
Gene regulatory network ,Computational biology ,Biology ,QH426-470 ,regulatory network ,03 medical and health sciences ,0302 clinical medicine ,Cortex (anatomy) ,Cerebellar hemisphere ,Cerebellum ,Gene expression ,expression ,medicine ,Genetics ,Gene Regulatory Networks ,mutual information ,Molecular Biology ,Gene ,Genetics (clinical) ,030304 developmental biology ,0303 health sciences ,Gene Expression Profiling ,Brain ,Computational Biology ,Mutual information ,Mixture model ,Genome Report ,medicine.anatomical_structure ,Cerebellar cortex ,cerebellar gene ,RNA ,differential rna ,030217 neurology & neurosurgery ,Algorithms - Abstract
Bigenic expression relationships are conventionally defined based on metrics such as Pearson or Spearman correlation that cannot typically detect latent, non-linear dependencies or require the relationship to be monotonic. Further, the combination of intrinsic and extrinsic noise as well as embedded relationships between sample sub-populations reduces the probability of extracting biologically relevant edges during the construction of gene co-expression networks (GCNs). In this report, we address these problems via our NetExtractor algorithm. NetExtractor examines all pairwise gene expression profiles first with Gaussian mixture models (GMMs) to identify sample sub-populations followed by mutual information (MI) analysis that is capable of detecting non-linear differential bigenic expression relationships. We applied NetExtractor to brain tissue RNA profiles from the Genotype-Tissue Expression (GTEx) project to obtain a brain tissue specific gene expression relationship network centered on cerebellar and cerebellar hemisphere enriched edges. We leveraged the PsychENCODE pre-frontal cortex (PFC) gene regulatory network (GRN) to construct a cerebellar cortex (cerebellar) GRN associated with transcriptionally active regions in cerebellar tissue. Thus, we demonstrate the utility of our NetExtractor approach to detect biologically relevant and novel non-linear binary gene relationships.
- Published
- 2020
- Full Text
- View/download PDF