1. Preliminary Analysis on the Hydrostatic Stability of a Self-Aligning Floating Offshore Wind Turbine
- Author
-
Diane Scicluna, Claire De Marco Muscat-Fenech, Tonio Sant, Giuliano Vernengo, and Tahsin Tezdogan
- Subjects
FOWT ,self-alignment ,SPM ,renewable energy ,wind energy ,Naval architecture. Shipbuilding. Marine engineering ,VM1-989 ,Oceanography ,GC1-1581 - Abstract
There exist vast areas of offshore wind resources with water depths greater than 100 m that require floating structures. This paper provides a detailed analysis on the hydrostatic stability characteristics of a novel floating wind turbine concept. The preliminary design supports an 8 MW horizontal-axis wind turbine with a custom self-aligning single-point mooring (SPM) floater, which is to be constructed within the existing shipyard facilities in the Maltese Islands, located in the Central Mediterranean Sea. The theoretical hydrostatic stability calculations used to find the parameters to create the model are validated using SESAM®. The hydrostatic stability analysis is carried out for different ballast capacities whilst also considering the maximum axial thrust induced by the rotor during operation. The results show that the entire floating structure exhibits hydrostatic stability characteristics for both the heeling and pitching axes that comply with the requirements set by the DNV ST-0119 standard. Numerical simulations using partial ballast are also presented.
- Published
- 2022
- Full Text
- View/download PDF