1. Acidic electrolyzed-oxidizing water treatment mitigated the disease progression in Phomopsis longanae Chi-infected longans by modulating ROS and membrane lipid metabolism.
- Author
-
Li M, Lin H, Wang C, Chen Y, Lin M, Hung YC, Lin Y, Fan Z, Wang H, and Chen Y
- Subjects
- Oxidation-Reduction, Membrane Lipids metabolism, Ascomycota chemistry, Water metabolism, Lipid Peroxidation drug effects, Lipid Metabolism, Electrolysis, Reactive Oxygen Species metabolism, Fruit chemistry, Fruit metabolism, Plant Diseases microbiology, Plant Diseases prevention & control
- Abstract
Postharvest harmful pathogenic infestation leads to rapid decay in longan fruit. Compared with P. longanae-infected longans, AEOW alleviated fruit disease severity and diminished the O
2 production rate and MDA content. It also increased APX, CAT, and SOD activities, delayed the decrease in the levels of GSH and AsA, as well as the reducing power and DPPH radical scavenging ability, which resulted in a decline in membrane lipid peroxidation in P. longanae-infected longans. Additionally, AEOW reduced LOX, lipase, PI-PLC, PC-PLC, and PLD activities, maintained higher levels of PC, PI, IUFA, USFAs, and U/S, while reducing levels of PA, DAG, SFAs, and CMP. These effects alleviated membrane lipid degradation and peroxidation in P. longanae-infected longans. Consequently, AEOW effectively maintained membrane integrity via improving antioxidant capacity and suppressing membrane lipid peroxidation. This comprehensive coordination of ROS and membrane lipid metabolisms improved fruit resistance and delayed disease development in longans.-. production rate and MDA content. It also increased APX, CAT, and SOD activities, delayed the decrease in the levels of GSH and AsA, as well as the reducing power and DPPH radical scavenging ability, which resulted in a decline in membrane lipid peroxidation in P. longanae-infected longans. Additionally, AEOW reduced LOX, lipase, PI-PLC, PC-PLC, and PLD activities, maintained higher levels of PC, PI, IUFA, USFAs, and U/S, while reducing levels of PA, DAG, SFAs, and CMP. These effects alleviated membrane lipid degradation and peroxidation in P. longanae-infected longans. Consequently, AEOW effectively maintained membrane integrity via improving antioxidant capacity and suppressing membrane lipid peroxidation. This comprehensive coordination of ROS and membrane lipid metabolisms improved fruit resistance and delayed disease development in longans., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF