7 results on '"Garcia-Dominguez, Ximo"'
Search Results
2. Long-term effects after vitrified embryo transfer procedure are transmitted by paternal germline in rabbits.
- Author
-
Garcia-Dominguez, Ximo, Marco-Jiménez, Francisco, Juarez, Jorge D., Garcia-Valero, Luis, Peñaranda, David S., Vicente, Jose S., and Viudes-de-Castro, Maria Pilar
- Subjects
- *
EMBRYO transfer , *GERM cells , *RABBITS , *CYTOPLASMIC inheritance , *GENOMIC imprinting , *FROZEN human embryos - Published
- 2020
- Full Text
- View/download PDF
3. Effect of Embryo Vitrification on the Steroid Biosynthesis of Liver Tissue in Rabbit Offspring.
- Author
-
Marco-Jiménez, Francisco, Garcia-Dominguez, Ximo, Domínguez-Martínez, Marta, Viudes-de-Castro, María Pilar, Diretto, Gianfranco, Peñaranda, David S., and Vicente, José S.
- Subjects
- *
VITRIFICATION , *EMBRYO transfer , *BIOSYNTHESIS , *EMBRYOS , *FROZEN human embryos - Abstract
Preimplantation embryo manipulations during standard assisted reproductive technologies (ART) have significant repercussions on offspring. However, few studies to date have investigated the potential long-term outcomes associated with the vitrification procedure. Here, we performed an experiment to unravel the particular effects related to stress induced by embryo transfer and vitrification techniques on offspring phenotype from the foetal period through to prepuberal age, using a rabbit model. In addition, the focus was extended to the liver function at prepuberal age. We showed that, compared to naturally conceived animals (NC), offspring derived after embryo exposure to the transfer procedure (FT) or cryopreservation-transfer procedure (VT) exhibited variation in growth and body weight from foetal life to prepuberal age. Strikingly, we found a nonlinear relationship between FT and VT stressors, most of which were already present in the FT animals. Furthermore, we displayed evidence of variation in liver function at prepuberal age, most of which occurred in both FT and VT animals. The present major novel finding includes a significant alteration of the steroid biosynthesis profile. In summary, here we provide that embryonic manipulation during the vitrification process is linked with embryo phenotypic adaptation detected from foetal life to prepuberal age and suggests that this phenotypic variation may be associated, to a great extent, with the effect of embryo transfer. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
4. Metabolomic Analysis Reveals Changes in Preimplantation Embryos Following Fresh or Vitrified Transfer.
- Author
-
Garcia-Dominguez, Ximo, Diretto, Gianfranco, Frusciante, Sarah, Vicente, José Salvador, and Marco-Jiménez, Francisco
- Subjects
- *
EMBRYOS , *UNSATURATED fatty acids , *KREBS cycle , *EMBRYO transfer , *REPRODUCTIVE technology , *FROZEN human embryos , *AMINO acid metabolism - Abstract
Although assisted reproduction technologies (ARTs) are recognised as safe, and most of the offspring seem apparently healthy, there is clear evidence that ARTs are associated with changes in the embryo's developmental trajectory, which incur physiological consequences during the prenatal and postnatal stages of life. The present study aimed to address the influence of early (day-3 embryos) embryo transfer and cryopreservation on embryo survival, size, and metabolome at the preimplantation stage (day-6 embryos). To this end, fresh-transferred (FT) and vitrified-transferred (VT) embryos were compared using naturally-conceived (NC) embryos as a control reference. The results show that as in vitro manipulation was increased (NC < FT < VT), both embryo survival rate (0.91 ± 0.02, 0.78 ± 0.05 and 0.63 ± 0.05, for NC, FT, and VT groups, respectively) and embryo size (3.21 ± 0.49 mm, 2.15 ± 0.51 mm, 1.76 ± 0.46 mm of diameter for NC, FT, and VT groups, respectively) were significantly decreased. Moreover, an unbiased metabolomics analysis showed overall down-accumulation in 40 metabolites among the three experimental groups, with embryo transfer and embryo cryopreservation procedures both exerting a cumulative effect. In this regard, targeted metabolomics findings revealed a significant reduction in some metabolites involved in metabolic pathways, such as the Krebs cycle, amino acids, unsaturated fatty acids, and arachidonic acid metabolisms. Altogether, these findings highlight a synergistic effect between the embryo transfer and vitrification procedures in preimplantation embryos. However, the ex vivo manipulation during embryo transfer seemed to be the major trigger of the embryonic changes, as the deviations added by the vitrification process were relatively smaller. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
5. Long-Term Effects Following Fresh/Vitrified Embryo Transfer Are Transmitted by Paternal Germline in a Large Size Rabbit Cohort.
- Author
-
Garcia-Dominguez, Ximo, Vicente, José Salvador, Viudes-de-Castro, María P., and Marco-Jiménez, Francisco
- Subjects
- *
EMBRYO transfer , *GERM cells , *MAMMALIAN embryos , *REPRODUCTIVE technology , *RABBITS , *BODY weight , *FROZEN human embryos , *CHILD development deviations - Abstract
Simple Summary: Assisted reproductive technologies (ARTs) involve an extraordinary change in the natural developmental trajectory of the mammalian embryo, incurring potential long-term and inheritable effects in the resulting offspring. The results of this study demonstrate, for the first time, that ex vivo embryo manipulations during fresh and vitrified embryo transfer are associated with paternally inherited bodyweight variation, but seemed not transmissible via the female germline. This asymmetry in the transmission of acquired features following ARTs suggests that embryo paternal and maternal genomes differ in their degree of susceptibility to the lasting effects of ARTs. This study would provide a novel view of developmental plasticity in the early mammalian embryo. The concept of developmental programming suggests that the early life environment influences offspring phenotype in later life, whose effects may also be manifested in further generations. Valuable pieces of evidence come from the fields applying assisted reproductive technologies (ARTs), which deprive embryos of their optimal maternal environment and were thus associated with subsequent developmental deviations. Recently, we demonstrated that the in vitro manipulations during a vitrified embryo transfer procedure incurs a cumulative and transgenerational decline in the growth performance of the resulting offspring. Here, we provide a longitudinal study to investigate whether previous developmental deviations could be indistinctly paternally or maternally transmitted using crossbred mattings. Our findings revealed that early embryo manipulations through fresh and vitrified embryo transfer incurred paternally transmissible effects over the growth pattern and adult body weight, which seemed not inheritable via the female germline. Similar inheritable effects were observed after fresh and vitrified embryo transfer, suggesting that disturbing optimal embryo development through in vitro manipulations was the principal trigger of transmissible effects, rather than embryo cryopreservation per se. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
6. Long-Term Phenotypic and Proteomic Changes Following Vitrified Embryo Transfer in the Rabbit Model.
- Author
-
Garcia-Dominguez, Ximo, Marco-Jiménez, Francisco, Peñaranda, David S., and Vicente, José Salvador
- Subjects
- *
EMBRYO transfer , *FERTILIZATION in vitro , *LIPID metabolism , *MAMMALIAN embryos , *MAMMAL development , *REPRODUCTIVE technology , *PROTEOMICS , *FROZEN human embryos - Abstract
Simple Summary: This study was conducted to demonstrate how a vitrified embryo transfer procedure incurs phenotypic and molecular changes throughout life. This study reports the first evidence describing that embryonic manipulation during a vitrified embryo transfer cycle induced molecular modifications, concerning oxidative phosphorylation and dysregulations in zinc and lipid metabolism in liver tissue, which has been reported as responsible for postnatal variations of the phenotype. Nowadays, assisted reproductive technologies (ARTs) are considered valuable contributors to our past, but a future without their use is inconceivable. However, in recent years, several studies have evidenced a potential impact of ART on long-term development in mammal species. To date, the long-term follow-up data are still limited. So far, studies have mainly focused on in vitro fertilization or in vitro culture, with information from gametes/embryos cryopreservation field being practically missing. Herein, we report an approach to determine whether a vitrified embryo transfer procedure would have long-term consequences on the offspring. Using the rabbit as a model, we compared animals derived from vitrified-transferred embryos versus those naturally conceived, studying the growth performance, plus the weight throughout life, and the internal organs/tissues phenotype. The healthy status was assessed over the hematological and biochemical parameters in peripheral blood. Additionally, a comparative proteomic analysis was conducted in the liver tissue to investigate molecular cues related to vitrified embryo transfer in an adult tissue. After vitrified embryo transfer, birth weight was increased, and the growth performance was diminished in a sex-specific manner. In addition, vitrified-transferred animals showed significantly lower body, liver and heart weights in adulthood. Molecular analyses revealed that vitrified embryo transfer triggers reprogramming of the liver proteome. Functional analysis of the differentially expressed proteins showed changes in relation to oxidative phosphorylation and dysregulations in the zinc and lipid metabolism, which has been reported as possible causes of a disturbed growth pattern. Therefore, we conclude that vitrified embryo transfer is not a neutral procedure, and it incurs long-term effects in the offspring both at phenotypic and molecular levels. These results described a striking example of the developmental plasticity exhibited by the mammalian embryo. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
7. Experimental Evidence Reveals Both Cross-Infection and Cross-Contamination Risk of Embryo Storage in Liquid Nitrogen Biobanks.
- Author
-
Marin, Clara, Garcia-Dominguez, Ximo, Montoro-Dasi, Laura, Lorenzo-Rebenaque, Laura, Vicente, José S., and Marco-Jimenez, Francisco
- Subjects
- *
LIQUID nitrogen , *FERTILITY preservation , *HUMAN reproductive technology , *EMBRYOS , *EMBRYO transfer , *FROZEN human embryos , *BIOBANKS , *ENTEROBACTER aerogenes - Abstract
Simple Summary: This study was conducted to demonstrate the potential hazards of cross-infection and cross-contamination of embryos during storage in liquid nitrogen biobanks. For the harmless and successful cryopreservation of embryos, the vitrification method must be chosen meticulously to guarantee not only a high post-thaw survival of embryos, but also to reduce the risk of disease transmission when those embryos are in storage for long periods. In recent decades, gamete and embryo cryopreservation have become routine procedures in livestock and human assisted reproduction. However, the safe storage of germplasm and the prevention of disease transmission continue to be potential hazards of disease transmission through embryo transfer. This study aimed to demonstrate the potential risk of cross-infection of embryos from contaminated liquid nitrogen, and cross-contamination of sterile liquid nitrogen from infected embryos in naked and closed devices. Additionally, we examined the effects of antibiotic-free media on culture development of infected embryos. The study was a laboratory-based analysis using rabbit as a model. Two experiments were performed to evaluate both cross-infection (liquid nitrogen to embryos) and cross-contamination (embryos to liquid nitrogen) of artificially inoculated Salmonella Typhimurium, Staphylococcus aureus, Enterobacter aerogenes, and Aspergillus brasiliensis. Rapid cooling through vitrification was conducted on rabbit embryos, stored for a year, thawed, and cultured. In vivo produced late morulae–early blastocyst stages (72 h) embryos were used (n = 480). Embryos were cultured for 1 h in solutions with and without pathogens. Then, the embryos were vitrified and stored in naked and closed devices for one year in two liquid nitrogen biobanks (one pathogen-free and the other artificially contaminated). Embryos were warmed and cultured for a further 48 h, assessing the development and the presence of microorganism (chromogenic media, scanning electron microscopy). Embryos stored in naked devices in artificially contaminated liquid nitrogen became infected (12.5%), while none of the embryos stored in closed devices were infected. Meanwhile, storage of artificially infected embryos incurred liquid nitrogen biobank contamination (100%). Observations by scanning electron microscopy revealed that all the microorganisms were caught in the surface of embryos after the vitrification-thawed procedure. Nevertheless, embryos cultured in antibiotics and antimycotic medium developed to the hatched blastocyst stage, while artificially infected embryos cultured in antibiotic-free medium failed to develop. In conclusion, our findings support that both cross-contamination and cross-infection during embryo storage in liquid nitrogen biobanks are plausible. So, to ensure biosafety for the cryogenic storage, closed systems that avoid direct contact with liquid nitrogen must be used. Moreover, it seems essential to provide best practice guidelines for the cryogenic preservation and storage of gametes and embryos, to define appropriate quality and risk management procedures. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.