1. Unveiling the charge distribution of a GaAs-based nanoelectronic device: A large experimental data-set approach
- Author
-
Eleni Chatzikyriakou, Junliang Wang, Lucas Mazzella, Antonio Lacerda-Santos, Maria Cecilia da Silva Figueira, Alex Trellakis, Stefan Birner, Thomas Grange, Christopher Bäuerle, Xavier Waintal, Laboratory of Quantum Theory (GT), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Circuits électroniques quantiques Alpes (NEEL - QuantECA), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Nextnano GmbH, and Nextnano Lab
- Subjects
[PHYS]Physics [physics] ,[SPI]Engineering Sciences [physics] ,Condensed Matter - Mesoscale and Nanoscale Physics ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,General Physics and Astronomy ,FOS: Physical sciences - Abstract
In quantum nanoelectronics, numerical simulations have become an ubiquitous tool. Yet the comparison with experiments is often done at a qualitative level or restricted to a single device with a handful of fitting parameters. In this work, we assess the predictive power of these simulations by comparing the results of a single model with a large experimental data set of 110 devices with 48 different geometries. The devices are quantum point contacts of various shapes and sizes made with electrostatic gates deposited on top of a high mobility GaAs/GaAlAs two dimensional electron gas. We study the pinch-off voltages applied on the gates to deplete the two-dimensional electron gas in various spatial positions. We argue that the pinch-off voltages are a very robust signature of the charge distribution in the device. The large experimental data set allows us to critically review the modeling and arrive at a robust one-parameter model that can be calibrated in situ, a crucial step for making predictive simulations., 33 pages, 16 figures, journal submission, corrected author name typo, added references, corrected visibility of appendix table, to appear in Physical Review Research
- Published
- 2022
- Full Text
- View/download PDF