Gilles Gaudin, T. Hingant, Laurent Vila, J.-P. Adam, L. Herrera Diez, Berthold Ocker, Jean-Philippe Tetienne, André Thiaville, Dafiné Ravelosona, Karin Garcia, Jean-François Roch, Joo-Von Kim, Stanislas Rohart, Luis Martinez, Ioan Mihai Miron, Vincent Jacques, Laboratoire Aimé Cotton (LAC), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Cachan (ENS Cachan), Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Institut d'électronique fondamentale (IEF), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Singulus technology AG, ANR-09-PDOC-0008,DIAMAG,Magnétomètre à centres colorés du diamant(2009), ANR-11-BS10-0008,ESPERADO,Effets du couple de transfert de spin et des champs Rashba et Oersted sur la dynamique de parois(2011), European Project: 611143,EC:FP7:ICT,FP7-ICT-2013-10,DIADEMS(2013), European Project: 257707,EC:FP7:ICT,FP7-ICT-2009-5,MAGWIRE(2010), and École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
The recent observation of current-induced domain wall (DW) motion with large velocity in ultrathin magnetic wires has opened new opportunities for spintronic devices. However, there is still no consensus on the underlying mechanisms of DW motion. Key to this debate is the DW structure, which can be of Bloch or N\'eel type, and dramatically affects the efficiency of the different proposed mechanisms. To date, most experiments aiming to address this question have relied on deducing the DW structure and chirality from its motion under additional in-plane applied fields, which is indirect and involves strong assumptions on its dynamics. Here we introduce a general method enabling direct, in situ, determination of the DW structure in ultrathin ferromagnets. It relies on local measurements of the stray field distribution above the DW using a scanning nanomagnetometer based on the Nitrogen-Vacancy defect in diamond. We first apply the method to a Ta/Co40Fe40B20(1 nm)/MgO magnetic wire and find clear signature of pure Bloch DWs. In contrast, we observe left-handed N\'eel DWs in a Pt/Co(0.6 nm)/AlOx wire, providing direct evidence for the presence of a sizable Dzyaloshinskii-Moriya interaction (DMI) at the Pt/Co interface. This method offers a new path for exploring interfacial DMI in ultrathin ferromagnets and elucidating the physics of DW motion under current., Comment: Main text and Supplementary Information, 33 pages and 12 figures