1. CZTS Raman spectra beyond kesterite: a first-principles study
- Author
-
Ramkumar, S. P., Miranda, H. P. C., Gonze, X., and Rignanese, G. -M.
- Subjects
Condensed Matter - Materials Science ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences - Abstract
Cu$_2$ZnSnS$_4$ is an earth-abundant photovoltaic absorber material predicted to provide a sustainable solution for commercial solar applications. One of the main limitations restricting its commercialization is the issue of cation disorder. Raman spectroscopy has been a sought after technique to characterize disorder in CZTS while a clear consensus between theoretical and experimental results is yet to be achieved. In the present study, via the virtual crystal approximation, we take into account the progressive nature of Cu-Zn disorder in CZTS: we obtain the phonon frequencies at zone-center within the density functional perturbation theory formalism, and further compute the Raman spectra for the disordered phases, achieving a consensus between theory and experiment. These calculations confirm the presence of complete disorder in Cu-Zn 2$a$, 2$c$ and 2$d$ Wyckoff sites. They also show that the Raman intensities of two prominent $A$ phonon modes characterized by motion of S atoms, also known to be experimentally significant, play a key role in understanding the nature of disorder in CZTS., Comment: 16 pages, 5 figures (+7 figures in the appendix)
- Published
- 2021
- Full Text
- View/download PDF