1. On Strominger Kähler-like manifolds with degenerate torsion
- Author
-
Yau, Shing-Tung, Zhao, Quanting, and Zheng, Fangyang
- Subjects
Differential Geometry (math.DG) ,Mathematics::Complex Variables ,Applied Mathematics ,General Mathematics ,FOS: Mathematics ,Mathematics::Differential Geometry ,Mathematics::Symplectic Geometry - Abstract
In this paper, we study a special type of compact Hermitian manifolds that are Strominger Kähler-like, or SKL for short. This condition means that the Strominger connection (also known as Bismut connection) is Kähler-like, in the sense that its curvature tensor obeys all the symmetries of the curvature of a Kähler manifold. Previously, we have shown that any SKL manifold ( M n , g ) (M^n,g) is always pluriclosed, and when the manifold is compact and g g is not Kähler, it cannot admit any balanced or strongly Gauduchon (in the sense of Popovici) metric. Also, when n = 2 n=2 , the SKL condition is equivalent to the Vaisman condition. In this paper, we give a classification for compact non-Kähler SKL manifolds in dimension 3 3 and those with degenerate torsion in higher dimensions. We also present some properties about SKL manifolds in general dimensions, for instance, given any compact non-Kähler SKL manifold, its Kähler form represents a non-trivial Aeppli cohomology class, the metric can never be locally conformal Kähler when n ≥ 3 n\geq 3 , and the manifold does not admit any Hermitian symplectic metric.
- Published
- 2023