1. The double-power nonlinear Schrödinger equation and its generalizations: uniqueness, non-degeneracy and applications
- Author
-
Simona Rota Nodari, Mathieu Lewin, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris sciences et lettres (PSL), Institut de Mathématiques de Bourgogne [Dijon] (IMB), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB), ANR-17-CE40-0016,DYRAQ,Dynamique des systèmes quantiques relativistes(2017), European Project: 725528,MDFT, Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), and Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Pure mathematics ,Conjecture ,Applied Mathematics ,010102 general mathematics ,Orbital stability ,01 natural sciences ,Schrödinger equation ,Mathematics - Spectral Theory ,010101 applied mathematics ,symbols.namesake ,Mathematics - Analysis of PDEs ,FOS: Mathematics ,symbols ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Uniqueness ,0101 mathematics ,Degeneracy (mathematics) ,Spectral Theory (math.SP) ,Nonlinear Schrödinger equation ,Analysis ,Analysis of PDEs (math.AP) ,Mathematics ,[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP] - Abstract
In this paper we first prove a general result about the uniqueness and non-degeneracy of positive radial solutions to equations of the form $$\Delta u+g(u)=0$$ . Our result applies in particular to the double power non-linearity where $$g(u)=u^q-u^p-\mu u$$ for $$p>q>1$$ and $$\mu >0$$ , which we discuss with more details. In this case, the non-degeneracy of the unique solution $$u_\mu $$ allows us to derive its behavior in the two limits $$\mu \rightarrow 0$$ and $$\mu \rightarrow \mu _*$$ where $$\mu _*$$ is the threshold of existence. This gives the uniqueness of energy minimizers at fixed mass in certain regimes. We also make a conjecture about the variations of the $$L^2$$ mass of $$u_\mu $$ in terms of $$\mu $$ , which we illustrate with numerical simulations. If valid, this conjecture would imply the uniqueness of energy minimizers in all cases and also give some important information about the orbital stability of $$u_\mu $$ .
- Published
- 2020
- Full Text
- View/download PDF