1. Concentration inequality for U-statistics of order two for uniformly ergodic Markov chains
- Author
-
Duchemin, Quentin, De Castro, Yohann, Lacour, Claire, Laboratoire Analyse et Mathématiques Appliquées (LAMA), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), This work was supported by grants from Région Ile de France., Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
FOS: Computer and information sciences ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Statistics and Probability ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,Statistics - Machine Learning ,Probability (math.PR) ,FOS: Mathematics ,Machine Learning (stat.ML) ,Mathematics - Statistics Theory ,Statistics Theory (math.ST) ,[STAT.OT]Statistics [stat]/Other Statistics [stat.ML] ,Mathematics - Probability - Abstract
We prove a new concentration inequality for U-statistics of order two for uniformly ergodic Markov chains. Working with bounded and $\pi$-canonical kernels, we show that we can recover the convergence rate of Arcones and Gin{\'e} who proved a concentration result for U-statistics of independent random variables and canonical kernels. Our result allows for a dependence of the kernels $h_{i,j}$ with the indexes in the sums, which prevents the use of standard blocking tools. Our proof relies on an inductive analysis where we use martingale techniques, uniform ergodicity, Nummelin splitting and Bernstein's type inequality. Assuming further that the Markov chain starts from its invariant distribution, we prove a Bernstein-type concentration inequality that provides sharper convergence rate for small variance terms., Comment: Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, In press
- Published
- 2023