1. ST2 deletion accelerates inflammatory-angiogenesis and remodeling in subcutaneous implants in mice.
- Author
-
Viana CTR, Orellano LAA, Machado CT, Almeida CP, de Lazari MGT, Campos PP, and Andrade SP
- Subjects
- Animals, Collagen Type I metabolism, Disease Models, Animal, Extracellular Matrix pathology, Fibrosis, Foreign-Body Reaction etiology, Foreign-Body Reaction genetics, Foreign-Body Reaction pathology, Gene Deletion, Interleukin-1 Receptor-Like 1 Protein genetics, Male, Mice, Inbred BALB C, Mice, Knockout, Polyethylene Glycols, Polyurethanes, Signal Transduction, Subcutaneous Tissue pathology, Surgical Sponges, Vascular Endothelial Growth Factor A metabolism, Mice, Extracellular Matrix metabolism, Foreign-Body Reaction metabolism, Inflammation Mediators metabolism, Interleukin-1 Receptor-Like 1 Protein deficiency, Interleukin-33 metabolism, Neovascularization, Physiologic, Subcutaneous Tissue metabolism, Wound Healing
- Abstract
Implantation of biomedical/synthetic devices to replace and/or repair biological tissues very often induces an adverse healing response (scarce angiogenesis, excessive collagen deposition) which is detrimental to implant functionality and integration to host tissue. Interleukin-33/ST2 axis (IL-33/ST2) has been shown to modulate angiogenic and remodeling processes in several types of injuries. However, its effects on these processes after implantation of synthetic matrix have not been reported. Using synthetic matrix of polyether-polyurethane implanted subcutaneously in mice lacking ST2 receptor (ST2/KO), we characterized neovascularization and matrix remodeling in the fibrovascular tissue induced by the implants. Tissue accumulation was increased inside and around the implants in KO implants relative to the wild type (WT). More intense proliferative activity, using CDC 47 marker, was observed in KO implants compared with that of WT implants. Angiogenesis, using two endothelial cell markers, Von Willebrand Factor (VWF) and vascular endothelial cell VE cadherin and hemoglobin content, increased in implants of KO mice relative to control WT. Remodeling of the newly formed fibrovascular tissue (soluble collagen and PicroSirius Red-stained histological sections) showed predominance of type 1 collagen in ST2-KO implants versus type 3 in control implants. The number of positive cells for caspase-3, apoptotic marker, decreased in ST2 group. Our findings evidenced a role of IL-33/ST2 axis in restraining blood vessel formation and regulating the pattern of matrix remodeling in the fibrovascular tissue induced by synthetic implants. Intervention in this cytokine complex holds potential to accelerate integration of biomaterial and host tissue by improving blood supply and matrix remodeling., (Copyright © 2021. Published by Elsevier Inc.)
- Published
- 2022
- Full Text
- View/download PDF