1. Potential of visible/near infrared spectroscopy coupled with chemometric methods for discriminating and estimating the thickness of clogging in drip-irrigation
- Author
-
Julien Petit, Maxime Metz, Bruno Molle, Silvia Mas Mas Garcia, Ryad Bendoula, Nassim Ait-Mouheb, Gestion de l'Eau, Acteurs, Usages (UMR G-EAU), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-AgroParisTech-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Information – Technologies – Analyse Environnementale – Procédés Agricoles (UMR ITAP), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, Region Occitanie, INRAE Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-AgroParisTech-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
- Subjects
Materials science ,Drippers ,0207 environmental engineering ,Soil Science ,Soil science ,02 engineering and technology ,Drip irrigation ,Clogging ,[SDV.SA.STA]Life Sciences [q-bio]/Agricultural sciences/Sciences and technics of agriculture ,Partial least squares regression ,020701 environmental engineering ,Spectroscopy ,Optical coherence tomography (OCT) ,Partial least squares with discriminant analysis (PLS-DA) ,Fouling ,Visible near infrared ,Near-infrared spectroscopy ,Physical and chemical clogging ,[CHIM.MATE]Chemical Sciences/Material chemistry ,04 agricultural and veterinary sciences ,6. Clean water ,Control and Systems Engineering ,Bentonite ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Absorbance spectroscopy ,Partial least squares regression (PLSR) ,Agronomy and Crop Science ,Food Science - Abstract
International audience; Drip irrigation is one of the most efficient irrigation techniques, but it is susceptible to dripper clogging. This study proposes a novel and non-destructive method based on visible and near infrared (Vis/NIR) spectroscopy coupled with chemometric methods for the discrimination and thickness estimation of physical and chemical fouling in drip-irrigation systems. Four representative materials linked to physical and chemical clogging (kaolin, bentonite, sand and calcium carbonate) at different thicknesses were selected to illustrate the potential of the approach. Partial least squares regression (PLSR) and its modification partial least squares with discriminant analysis (PLS-DA) were selected for the modelling of clogging materials. The PLS-DA model was able to predict with 96.97% accuracy all classes of materials. The PLSR models were able to estimate fouling thickness with relative prediction errors comprised between 134 μm and 164 μm. This difference appears mainly to be due to the physical properties of the selected materials. This prediction accuracy enabled the estimation of the clogging thickness between 10 and 21% of dripper channel coverage depending on the dripper channel section and the material under study. The proposed method offers an appropriate approach for clogging studies in drip irrigation systems that could be transferred to field applications.
- Published
- 2021
- Full Text
- View/download PDF