ABEL, ZACHARY, DEMAINE, ERIK D., DEMAINE, MARTIN L., EISENSTAT, SARAH, LYNCH, JAYSON, SCHARDL, TAO B., and SHAPIRO-ELLOWITZ, ISAAC
We consider two types of folding applied to equilateral plane graph linkages. First, under continuous folding motions, we show how to reconfigure any linear equilateral tree (lying on a line) into a canonical configuration. By contrast, it is known that such reconfiguration is not always possible for linear (nonequilateral) trees and for (nonlinear) equilateral trees. Second, under instantaneous folding motions, we show that an equilateral plane graph has a noncrossing linear folded state if and only if it is bipartite. Furthermore, we show that the equilateral constraint is necessary for this result, by proving that it is strongly NP-complete to decide whether a (nonequilateral) plane graph has a linear folded state. Equivalently, we show strong NP-completeness of deciding whether an abstract metric polyhedral complex with one central vertex has a noncrossing flat folded state. By contrast, the analogous problem for a polyhedral manifold with one central vertex ( single-vertex origami) is only weakly NP-complete. [ABSTRACT FROM AUTHOR]