1. Improvement of the Green-Red Förster Resonance Energy Transfer-Based Ca 2+ Indicator by Using the Green Fluorescent Protein, Gamillus, with a Trans Chromophore as the Donor.
- Author
-
Matsuda T, Sakai S, Okazaki KI, and Nagai T
- Subjects
- Humans, Red Fluorescent Protein, HEK293 Cells, Fluorescence Resonance Energy Transfer methods, Calcium chemistry, Calcium metabolism, Calcium analysis, Green Fluorescent Proteins chemistry, Luminescent Proteins chemistry
- Abstract
To monitor the Ca
2+ dynamics in cells, various genetically encoded Ca2+ indicators (GECIs) based on Förster resonance energy transfer (FRET) between fluorescent proteins are widely used for live imaging. Conventionally, cyan and yellow fluorescent proteins have been often used as FRET pairs. Meanwhile, bathochromically shifted indicators with green and red fluorescent protein pairs have various advantages, such as low toxicity and autofluorescence in cells. However, it remains difficult to develop them with a similar level of dynamic range as cyan and yellow fluorescent protein pairs. To improve this, we used Gamillus, which has a unique trans-configuration chromophore, as a green fluorescent protein. Based on one of the best high-dynamic-range GECIs, Twitch-NR, we developed a GECI with 1.5-times higher dynamic range (253%), Twitch-GmRR, using RRvT as a red fluorescent protein. Twitch-GmRR had high brightness and photostability and was successfully applied for imaging the Ca2+ dynamics in live cells. Our results suggest that Gamillus with trans-type chromophores contributes to improving the dynamic range of GECIs. Therefore, selection of the cis-trans isomer of the chromophore may be a fundamental approach to improve the dynamic range of green-red FRET indicators, unlimited by GECIs.- Published
- 2024
- Full Text
- View/download PDF