1. Experimental study of the application of rotating fluidized beds to particle separation
- Author
-
Justin Weber, Juray De Wilde, Richard C. Stehle, Ronald W. Breault, UCL - SST/IMMC/IMAP - Materials and process engineering, US Department of Energy - National Energy Technology Laboratory, and Oak Ridge Institute for Science and Education
- Subjects
Fluidization ,Rotating fluidized bed ,Petroleum engineering ,Chemistry ,General Chemical Engineering ,Bubble ,High-G ,Ash separation ,02 engineering and technology ,Mechanics ,Chemical looping ,021001 nanoscience & nanotechnology ,Separation process ,020401 chemical engineering ,Process intensification ,Fluidized bed ,Drag ,Mass transfer ,Heat transfer ,0204 chemical engineering ,Carbon capture ,0210 nano-technology ,Chemical looping combustion - Abstract
Rotating fluidized beds provide a unique opportunity to exploit fluidization under higher particle forces. The centripetal force in a rotating fluid bed is typically on the order of 10 times the force of gravity. Since the force keeping the particles in the unit is larger, the drag force can also be larger, allowing for higher gas and slip velocities. This operating regime provides intensified gas-solids contact through higher mass transfer, heat transfer, gas throughput, and bubble suppression. One application for using a rotating fluidized bed is in Chemical Looping Combustion (CLC). When solid fuels are used, oxygen carrier and ash are mixed in the process. In order to maintain high carbon capture efficiencies and recyclability of the oxygen carrier, the ash needs to be separated from the oxygen carrier. This separation can be done aerodynamically since the oxygen carrier is larger and heavier than the ash. It is theorized that rotating fluidized beds could improve both the gas-solid and solid-solid separation process efficiency and throughput as compared to conventional fluidized beds. A 43 cm diameter, 2.5 cm long vortex chamber has been designed and constructed to investigate the application to particle separation. A series of experiments have been performed to investigate the separation of different binary mixtures of solids. These experiments demonstrate the use of a rotating fluidized bed for high-G intensified particle separation that can be combined with high-G intensified gas-solids contact and gas-solids separation.
- Published
- 2017
- Full Text
- View/download PDF