Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Finite Difference Navier-Stokes flow solver, FDNS, which includes the extended k-epsilon turbulence model and appropriate moving interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. A second-order central difference scheme plus adaptive dissipation terms was employed in the FDNS code, along with a predictor plus multi-corrector pressure-based solution procedure. The multi-zone, multi-block capability allows the FDNS code to efficiently solve flow fields with complicated geometry. The FDNS code has been benchmarked by analyzing the pump consortium inducer, and it provided satisfactory results. In the present study, a CFD parametric study of the pump consortium impeller was conducted using the FDNS code. The pump consortium impeller, with partial blades, is a new design concept of the advanced rocket engines. The parametric study was to analyze the baseline design of the consortium impeller and its modification which utilizes TANDEM blades. In the present study, the TANDEM blade configuration of the consortium impeller considers cut full blades for about one quarter chord length from the leading edge and clocks the leading edge portion with an angle of 7.5 or 22.5 degrees. The purpose of the present study is to investigate the effect and trend of the TANDEM blade modification and provide the result as a design guideline. A 3-D flow analysis, with a 103 x 23 x 30 mesh grid system and with the inlet flow conditions measured by Rocketdyne, was performed for the baseline consortium impeller. The numerical result shows that the mass flow rate splits through various blade passages are relatively uniform. Due to the complexity of blade geometries, the TANDEM blade configurations were analyzed with the multi-zone grid structure. Both the 7.5 deg- and the 22.5 deg-clocking TANDEM blade cases utilized a 80K mesh system. The numerical result of two TANDEM blade modifications indicates the efficiency and the head are worse than those of the baseline case due to larger flow distortion. The gap between the TANDEM blade and the full blade allows the flow passes through and heavily loads the pressure side of the partial blade such that flow reversal occurs near the suction side of the splitter. The flow split at the exit of impeller blades is very non-uniform for TANDEM blade cases, and this will greatly induce the side load on the diffuser. Therefore, the TANDEM blade modification in the present CFD analysis does not improve the performance of the consortium impeller.