1. Full [formula omitted]-approximation of linear elasticity on quadrilateral meshes based on [formula omitted] finite elements.
- Author
-
Quinelato, Thiago O., Loula, Abimael F.D., Correa, Maicon R., and Arbogast, Todd
- Subjects
- *
APPROXIMATION theory , *ELASTICITY , *QUADRILATERALS , *FINITE element method , *STABILITY of linear systems - Abstract
Abstract For meshes of nondegenerate, convex quadrilaterals, we present a family of stable mixed finite element spaces for the mixed formulation of planar linear elasticity. The problem is posed in terms of the stress tensor, the displacement vector and the rotation scalar fields, with the symmetry of the stress tensor weakly imposed. The proposed spaces are based on the Arnold–Boffi–Falk (ABF k , k ≥ 0) elements for the stress and piecewise polynomials for the displacement and the rotation. We prove that these finite elements provide full H (div) -approximation of the stress field, in the sense that it is approximated to order h k + 1 , where h is the mesh diameter, in the H (div) -norm. We show that displacement and rotation are also approximated to order h k + 1 in the L 2 -norm. The convergence is optimal order for k ≥ 1 , while the lowest order case, index k = 0 , requires special treatment. The spaces also apply to both compressible and incompressible isotropic problems, i.e., the Poisson ratio may be one-half. The implementation as a hybrid method is discussed, and numerical results are given to illustrate the effectiveness of these finite elements. Highlights • New stable finite element spaces for the mixed approximation of planar linear elasticity on quadrilaterals. • O (h k + 1) -approximation of the stress field in the H (div) -norm on meshes of nondegenerate, convex quadrilaterals, with k ≥ 1 (existing elements do not have this property). • Special treatment for the lowest order case (k = 0) with improved convergence rates for stress and rotation, in the L 2 -norm. • The formulation is suitable for both compressible and incompressible isotropic problems. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF