1. NUMERICAL VALIDATION OF PROBABILISTIC LAWS TO EVALUATE FINITE ELEMENT ERROR ESTIMATES
- Author
-
Joël Chaskalovic, Franck Assous, Institut Jean Le Rond d'Alembert (DALEMBERT), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and Ariel University Center (AUC)
- Subjects
65N15, 65N30, 65N75 ,probability ,010103 numerical & computational mathematics ,01 natural sciences ,Bramble-Hilbert lemma ,QA1-939 ,FOS: Mathematics ,Applied mathematics ,numerical validation ,Mathematics - Numerical Analysis ,[MATH]Mathematics [math] ,0101 mathematics ,Numerical validation ,Probabilistic framework ,Mathematics ,Mathematics::Combinatorics ,65N30 ,65N75 ,Numerical analysis ,010102 general mathematics ,Probabilistic logic ,Order (ring theory) ,Numerical Analysis (math.NA) ,16. Peace & justice ,Finite element method ,Rate of convergence ,error estimates ,Modeling and Simulation ,probability AMS Subject Classification: 65N15 ,finite elements ,Analysis ,65Gxx - Abstract
We propose a numerical validation of a probabilistic approach applied to estimate the relative accuracy between two Lagrange finite elements $P_k$ and $P_m, (k, Comment: 15 pages, 11 figures
- Published
- 2021
- Full Text
- View/download PDF