Lucia Romani, C. Le Guyader, Christian Gout, A.-G. Saint-Guirons, Gout C, Le Guyader C, Romani L, Saint-Guirons A-G, Gout, C, Le Guyader, C, Romani, L, Saint Guirons, A, Laboratoire de Mathématiques et leurs Applications de Valenciennes - EA 4015 (LAMAV), Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques de l'INSA de Rouen Normandie (LMI), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU), Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA), Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Dipartimento di Matematica e Applicazioni [Milano], Università degli Studi di Milano-Bicocca = University of Milano-Bicocca (UNIMIB), Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Centre National de la Recherche Scientifique (CNRS)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), and Università degli Studi di Milano-Bicocca [Milano] (UNIMIB)
International audience; In many problems of geophysical interest, one has to deal with data that exhibit complex fault structures. This occurs, for instance, when describing the topography of seafloor surfaces, mountain ranges, volcanoes, islands, or the shape of geological entities, as well as when dealing with reservoir characterization and modelling. In all these circumstances, due to the presence of large and rapid variations in the data, attempting a fitting using conventional approximation methods necessarily leads to instability phenomena or undesirable oscillations which can locally and even globally hinder the approximation. As will be shown in this paper, the right approach to get a good approximant consists, in effect, in applying first a segmentation process to precisely define the locations of large variations and faults, and exploiting then a discrete approximation technique. To perform the segmentation step, we propose a quasi-automatic algorithm that uses a level set method to obtain from the given (gridded or scattered) Lagrange data several patches delimited by large gradients (or faults). Then, with the knowledge of the location of the discontinuities of the surface, we generate a triangular mesh (which takes into account the identified set of discontinuities) on which a $D^m$ -spline approximant is constructed. To show the efficiency of this technique, we will present the results obtained by its application to synthetic datasets as well as real gridded datasets in Oceanography and Geosciences.