1. Fetal Endoscopic Third Ventriculostomy Is Technically Feasible in Prenatally Induced Hydrocephalus Ovine Model.
- Author
-
Peiro JL, Duru S, Fernandez-Tome B, Peiro L, Encinas JL, Sanchez-Margallo FM, and Oria M
- Subjects
- Animals, Sheep, Treatment Outcome, Ventriculostomy methods, Ventriculostomy veterinary, Fetus surgery, Hydrocephalus etiology, Hydrocephalus surgery, Hydrocephalus veterinary, Neuroendoscopy methods, Neuroendoscopy veterinary, Third Ventricle surgery
- Abstract
Background: Congenital obstructive hydrocephalus generates progressive irreversible fetal brain damage by ventricular enlargement and incremental brain tissue compression that leads to maldevelopment and poor clinical outcomes. Intrauterine treatments such as ventriculo-amniotic shunting have been unsuccessfully tried in the eighties., Objective: To assess if prenatal endoscopic third ventriculostomy (ETV) is feasible in a large animal model and optimize this technique for ventricular decompression and potential arrest of fetal brain damage in fetal lambs., Methods: We generated hydrocephalus in 50 fetal lambs by injecting a polymeric agent into the cisterna magna at midgestation (E85). Subsequently, 3 weeks later (E105), fetal ETV was performed using a small rigid fetoscope. The endoscopy entry point was located anterior to the coronal suture, 7 mm from the midline., Results: We obtained clear visualization of the enlarged lateral ventricles by endoscopy in the hydrocephalic fetal lambs. The floor of the third ventricle was bluntly perforated and passed with the scope for a successful ETV. Total success was achieved in 32/50 cases (64%). Causes of failure were blurred vision or third ventricle obliteration by BioGlue in 10/50 (20%) cases, anatomic misdirection of the endoscope in 5 (10%) cases, 2 cases of very narrow foramen of Monro, and 1 case of choroid plexus bleeding. If we exclude the cases artificially blocked by the polymer, we had a successful performance of prenatal-ETV in 80% (32/40) of hydrocephalic fetuses., Conclusion: Despite the inherent difficulties arising from ovine brain anatomy, this study shows that innovative fetal ETV is technically feasible in hydrocephalic fetal lambs., (Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the Congress of Neurological Surgeons.)
- Published
- 2023
- Full Text
- View/download PDF