1. Ascorbic acid metabolites are involved in intraocular pressure control in the general population.
- Author
-
Hysi, Pirro G, Khawaja, Anthony P, Menni, Cristina, Tamraz, Bani, Wareham, Nick, Khaw, Kay-Tee, Foster, Paul J, Benet, Leslie Z, Spector, Tim D, and Hammond, Chris J
- Subjects
Humans ,Glaucoma ,Ascorbic Acid ,Intraocular Pressure ,Adult ,Aged ,Middle Aged ,Female ,Male ,Metabolomics ,Metabolome ,Public Health Surveillance ,Ascorbate metabolism ,Intraocular pressure ,Multi-omics ,Neurodegenerative ,Prevention ,Aging ,Eye Disease and Disorders of Vision ,Neurosciences ,Multi-omits ,Biochemistry and Cell Biology ,Medical Biochemistry and Metabolomics ,Pharmacology and Pharmaceutical Sciences - Abstract
Elevated intraocular pressure (IOP) is an important risk factor for glaucoma. Mechanisms involved in its homeostasis are not well understood, but associations between metabolic factors and IOP have been reported. To investigate the relationship between levels of circulating metabolites and IOP, we performed a metabolome-wide association using a machine learning algorithm, and then employing Mendelian Randomization models to further explore the strength and directionality of effect of the metabolites on IOP. We show that O-methylascorbate, a circulating Vitamin C metabolite, has a significant IOP-lowering effect, consistent with previous knowledge of the anti-hypertensive and anti-oxidative role of ascorbate compounds. These results enhance understanding of IOP control and may potentially benefit future IOP treatment and reduce vision loss from glaucoma.
- Published
- 2019