1. TILLING-by-Sequencing + Reveals the Role of Novel Fatty Acid Desaturases (GmFAD2-2s) in Increasing Soybean Seed Oleic Acid Content.
- Author
-
Lakhssassi N, Lopes-Caitar VS, Knizia D, Cullen MA, Badad O, El Baze A, Zhou Z, Embaby MG, Meksem J, Lakhssassi A, Chen P, AbuGhazaleh A, Vuong TD, Nguyen HT, Hewezi T, and Meksem K
- Subjects
- Fatty Acid Desaturases genetics, Gene Expression Regulation, Plant, Genotype, High-Throughput Nucleotide Sequencing, Mutation, Phenotype, Phylogeny, Plant Proteins genetics, Plants, Genetically Modified genetics, Seeds genetics, Glycine max genetics, DNA Mutational Analysis, Fatty Acid Desaturases metabolism, Mutagenesis, Site-Directed, Oleic Acid metabolism, Plant Proteins metabolism, Plants, Genetically Modified enzymology, Seeds enzymology, Glycine max enzymology
- Abstract
Soybean is the second largest source of oil worldwide. Developing soybean varieties with high levels of oleic acid is a primary goal of the soybean breeders and industry. Edible oils containing high level of oleic acid and low level of linoleic acid are considered with higher oxidative stability and can be used as a natural antioxidant in food stability. All developed high oleic acid soybeans carry two alleles; GmFAD2-1A and GmFAD2-1B . However, when planted in cold soil, a possible reduction in seed germination was reported when high seed oleic acid derived from GmFAD2-1 alleles were used. Besides the soybean fatty acid desaturase ( GmFAD2-1 ) subfamily, the GmFAD2-2 subfamily is composed of five members, including GmFAD2-2A , GmFAD2-2B , GmFAD2-2C , GmFAD2-2D , and GmFAD2-2E . Segmental duplication of GmFAD2-1A / GmFAD2-1B , GmFAD2-2A/GmFAD2-2C , GmFAD2-2A/GmFAD2-2D , and GmFAD2-2D/GmFAD2-2C have occurred about 10.65, 27.04, 100.81, and 106.55 Mya, respectively. Using TILLING-by-Sequencing+ technology, we successfully identified 12, 8, 10, 9, and 19 EMS mutants at the GmFAD2-2A , GmFAD2-2B , GmFAD2-2C , GmFAD2-2D , and GmFAD2-2E genes, respectively. Functional analyses of newly identified mutants revealed unprecedented role of the five GmFAD2-2A , GmFAD2-2B , GmFAD2-2C , GmFAD2-2D , and GmFAD2-2E members in controlling the seed oleic acid content. Most importantly, unlike GmFAD2-1 members, subcellular localization revealed that members of the GmFAD2-2 subfamily showed a cytoplasmic localization, which may suggest the presence of an alternative fatty acid desaturase pathway in soybean for converting oleic acid content without substantially altering the traditional plastidial/ER fatty acid production.
- Published
- 2021
- Full Text
- View/download PDF