1. [Functional activity of exoglycans from Rhizobium leguminosarum bv. viciae 250a and its nitrogen-resistant mutant M-71 during the formation of legume-rhizobia symbiosis against a high-nitrogen background].
- Author
-
Kosenko LV, Mandrovskaia NM, and Krugova ED
- Subjects
- Culture Media, Culture Media, Conditioned, Fabaceae growth & development, Mutation, Nitrates, Nitrogen Fixation, Nitrogenase metabolism, Plant Roots microbiology, Polysaccharides, Bacterial biosynthesis, Polysaccharides, Bacterial pharmacology, Rhizobium leguminosarum genetics, Rhizobium leguminosarum growth & development, Fabaceae microbiology, Nitrogen metabolism, Polysaccharides, Bacterial physiology, Rhizobium leguminosarum physiology, Symbiosis
- Abstract
The functional activity of the exoglycan complex (EGC) polysaccharides from Rhizobium leguminosarum bv. viciae 250a and its nitrogen-resistant mutant M-71 capable of inducing the formation of nitrogen-fixing nodules on pea roots against a high-nitrogen background (4.8 mM NO3-) was studied in vegetation tests. For this purpose, the bacterial inoculum washed free of its own exoglycans was supplemented with EGC of this or another strain grown in the presence of 6 or 20 mM nitrate. The best symbiotic characteristics (nodule number and nitrogenase activity, mass of the roots and aerial parts of plants) were recorded when the inoculum cells and exoglycans were obtained from strain M-71 grown in the presence of 20 mM nitrate. When the plants were inoculated with the cells (grown at 6 mM nitrate) + EGC (obtained at 6 mM nitrate) of this strain, the nodulation characteristics and the effectiveness of symbiosis decreased 1.5-2-fold. Partial recovery of the symbiotic potential of strain M-71 was observed when EGC (obtained at 20 mM nitrate) was substituted for its exoglycans (obtained at 6 mM nitrate). In the presence of exoglycans of the parent strain 250a (obtained at 6 or 20 mM nitrate), the mutant formed a substantially lesser number of nodules with a very low nitrogen-fixing activity. In turn, the mutant exoglycans synthesized in medium with either high or low nitrate nitrogen concentration did not recover the fix+ phenotype of strain 250a capable of forming symbiosis with pea plants only against a low-nitrogen background. When studying the relative content of high-molecular-weight exopolysaccharide components and low-molecular-weight glycans in the exoglycan complex, it was established that, in strain 250a (grown at 6 and 20 mM nitrate), as well as in its mutant M-71 (grown at 6 mM nitrate), exopolysaccharides prevailed, accounting for 72-75% of the sum of both types of glycopolymers, while low-molecular-weight glycans accounted for 25-28%. In contrast, in the EGC of strain M-71 obtained at 20 mM nitrate, which was the most active inducer of the formation of the symbiotrophic system by strain M-71 in the presence of a high mineral nitrogen concentration, low-molecular-weight glycans were the main component, accounting for 61% of total glycopolymers, while the polysaccharide content was 39%. Low-molecular-weight exoglycans are supposed to be involved in maintaining the physiological activity and the symbiotic status of rhizobia under unfavorable environmental conditions.
- Published
- 2004