1. A nearby galaxy perspective on dust evolution
- Author
-
A. Nersesian, Jacopo Fritz, Anthony P. Jones, Sambit Roychowdhury, Nathalie Ysard, Wouter Dobbels, Letizia, Ilse De Looze, Maarten Baes, P. Cassará, Emmanuel M. Xilouris, Maud Galametz, Aleksandr V. Mosenkov, Suzanne C. Madden, Viviana Casasola, Frédéric Galliano, Simone Bianchi, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université de Haute Bretagne ( Rennes 2 ) (UR 2), University College of London [London] (UCL), Indian Institute of Technology Bombay (IIT Bombay), Sterrenkundig Observatorium, Universiteit Gent, Centre Pluridisciplinaire Textes et Cultures [Dijon] (CPTC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Universiteit Gent = Ghent University (UGENT), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES)
- Subjects
010504 meteorology & atmospheric sciences ,Metallicity ,statistical [methods] ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,STAR-FORMATION RATES ,01 natural sciences ,ISM: abundances ,POLYCYCLIC AROMATIC-HYDROCARBONS ,0103 physical sciences ,evolution ,Astrophysics::Solar and Stellar Astrophysics ,TO-GAS RATIO ,SMALL-MAGELLANIC-CLOUD ,LOW-TEMPERATURE MIR ,Ejecta ,010303 astronomy & astrophysics ,evolution [galaxies] ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,abundances [ISM] ,Physics ,methods: statistical ,Star formation ,extinction ,Astronomy and Astrophysics ,Mass ratio ,Astrophysics - Astrophysics of Galaxies ,ACTIVE GALACTIC NUCLEUS ,MASS ABSORPTION-COEFFICIENT ,Galaxy ,Grain growth ,Supernova ,SPECTRAL ENERGY-DISTRIBUTION ,Physics and Astronomy ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,MULTIBAND IMAGING PHOTOMETER ,Spectral energy distribution ,Astrophysics::Earth and Planetary Astrophysics ,dust ,galaxies: evolution ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,LOW-METALLICITY ENVIRONMENTS - Abstract
Methods. We have modelled a sample of ~800 nearby galaxies, spanning a wide range of metallicity, gas fraction, specific star formation rate and Hubble stage. We have derived the dust properties of each object from its spectral energy distribution. Through an additional level of analysis, we have inferred the timescales of dust condensation in core-collapse supernova ejecta, grain growth in cold clouds and dust destruction by shock waves. Throughout this paper, we have adopted a hierarchical Bayesian approach, resulting in a single large probability distribution of all the parameters of all the galaxies, to ensure the most rigorous interpretation of our data. Results. We confirm the drastic evolution with metallicity of the dust-to-metal mass ratio (by two orders of magnitude), found by previous studies. We show that dust production by core-collapse supernovae is efficient only at very low-metallicity, a single supernova producing on average less than ~0.03 Msun/SN of dust. Our data indicate that grain growth is the dominant formation mechanism at metallicity above ~1/5 solar, with a grain growth timescale shorter than ~50 Myr at solar metallicity. Shock destruction is relatively efficient, a single supernova clearing dust on average in at least ~1200 Msun/SN of gas. These results are robust when assuming different stellar initial mass functions. In addition, we show that early-type galaxies are outliers in several scaling relations. This feature could result from grain thermal sputtering in hot X-ray emitting gas, an hypothesis supported by a negative correlation between the dust-to-stellar mass ratio and the X-ray photon rate per grain. Finally, we confirm the well-known evolution of the aromatic-feature-emitting grain mass fraction as a function of metallicity and interstellar radiation field intensity. Our data indicate the relation with metallicity is significantly stronger., Comment: 64 pages, 36 figures, accepted for publication in Astronomy & Astrophysics
- Published
- 2021