1. Accurate prediction equations for ventilatory thresholds in cardiometabolic disease when gas exchange analysis is unavailable: development and validation.
- Author
-
Milani JGPO, Milani M, Machado FVC, Wilhelm M, Marcin T, D'Ascenzi F, Cavigli L, Keytsman C, Falter M, Bonnechere B, Meesen R, Braga F, Cipriano GFB, Cornelissen V, Verboven K, Cipriano Junior G, and Hansen D
- Subjects
- Humans, Male, Female, Middle Aged, Cross-Sectional Studies, Reproducibility of Results, Adult, Exercise Tolerance physiology, Pulmonary Gas Exchange, Anaerobic Threshold, Aged, Oxygen Consumption, Cardiorespiratory Fitness, Europe, Cardiovascular Diseases physiopathology, Cardiovascular Diseases diagnosis, Lung physiopathology, Exercise Test, Predictive Value of Tests, Heart Rate physiology
- Abstract
Aims: To develop and validate equations predicting heart rate (HR) at the first and second ventilatory thresholds (VTs) and an optimized range-adjusted prescription for patients with cardiometabolic disease (CMD). To compare their performance against guideline-based exercise intensity domains., Methods and Results: Cross-sectional study involving 2868 CMD patients from nine countries. HR predictive equations for first and second VTs (VT1, VT2) were developed using multivariate linear regression with 975 cycle-ergometer cardiopulmonary exercise tests (CPET). 'Adjusted' percentages of peak HR (%HRpeak) and HR reserve (%HRR) were derived from this group. External validation with 1893 CPET (cycle-ergometer or treadmill) assessed accuracy, agreement, and reliability against guideline-based %HRpeak and %HRR prescriptions using mean absolute percentage error (MAPE), Bland-Altman analyses, intraclass correlation coefficients (ICC). HR predictive equations (R²: 0.77 VT1, 0.88 VT2) and adjusted %HRR (VT1: 42%, VT2: 77%) were developed. External validation demonstrated superiority over widely used guideline-directed intensity domains for %HRpeak and %HRR. The new methods showed consistent performance across both VTs with lower MAPE (VT1: 7.1%, VT2: 5.0%), 'good' ICC for VT1 (0.81, 0.82) and 'excellent' for VT2 (0.93). Guideline-based exercise intensity domains had higher MAPE (VT1: 6.8-21.3%, VT2: 5.1-16.7%), 'poor' to 'good' ICC for VT1, and 'poor' to 'excellent' for VT2, indicating inconsistencies related to specific VTs across guidelines., Conclusion: Developed and validated HR predictive equations and the optimized %HRR for CMD patients for determining VT1 and VT2 outperformed the guideline-based exercise intensity domains and showed ergometer interchangeability. They offer a superior alternative for prescribing moderate intensity exercise when CPET is unavailable., Competing Interests: Conflicts of interest: No potential conflict of interest is reported by the authors., (© The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF