1. Gene Doping with Peroxisome-Proliferator-Activated Receptor Beta/Delta Agonists Alters Immunity but Exercise Training Mitigates the Detection of Effects in Blood Samples.
- Author
-
Sibille B, Mothe-Satney I, Le Menn G, Lepouse D, Le Garf S, Baudoin E, Murdaca J, Moratal C, Lamghari N, Chinetti G, Neels JG, and Rousseau AS
- Subjects
- Animals, Cells, Cultured, Humans, Inflammation immunology, Mice, Mice, Inbred C57BL, Oxidation-Reduction drug effects, PPAR delta pharmacology, PPAR-beta pharmacology, Performance-Enhancing Substances pharmacology, T-Lymphocytes, Regulatory cytology, T-Lymphocytes, Regulatory drug effects, Thiazoles pharmacology, Exercise physiology, Fatty Acids metabolism, PPAR delta agonists, PPAR-beta agonists, Substance Abuse Detection methods, T-Lymphocytes, Regulatory immunology
- Abstract
Synthetic ligands of peroxisome-proliferator-activated receptor beta/delta (PPARβ/δ) are being used as performance-enhancing drugs by athletes. Since we previously showed that PPARβ/δ activation affects T cell biology, we wanted to investigate whether a specific blood T cell signature could be employed as a method to detect the use of PPARβ/δ agonists. We analyzed in primary human T cells the in vitro effect of PPARβ/δ activation on fatty acid oxidation (FAO) and on their differentiation into regulatory T cells (Tregs). Furthermore, we conducted studies in mice assigned to groups according to an 8-week exercise training program and/or a 6-week treatment with 3 mg/kg/day of GW0742, a PPARβ/δ agonist, in order to (1) determine the immune impact of the treatment on secondary lymphoid organs and to (2) validate a blood signature. Our results show that PPARβ/δ activation increases FAO potential in human and mouse T cells and mouse secondary lymphoid organs. This was accompanied by increased Treg polarization of human primary T cells. Moreover, Treg prevalence in mouse lymph nodes was increased when PPARβ/δ activation was combined with exercise training. Lastly, PPARβ/δ activation increased FAO potential in mouse blood T cells. Unfortunately, this signature was masked by training in mice. In conclusion, beyond the fact that it is unlikely that this signature could be used as a doping-control strategy, our results suggest that the use of PPARβ/δ agonists could have potential detrimental immune effects that may not be detectable in blood samples.
- Published
- 2021
- Full Text
- View/download PDF