1. Cross-Effect Between Cover Crops and Glyphosate-Based Herbicide Application on Microbiote Communities in Field Crops Soils.
- Author
-
Bernier Brillon, Jérôme, Lucotte, Marc, Giusti, Blandine, Tremblay, Gilles, and Moingt, Matthieu
- Subjects
EXPERIMENTAL agriculture ,AGRICULTURE ,CROP management ,FIELD crops ,SUSTAINABILITY ,COVER crops - Abstract
This study investigates how cover crops (CC) and different application rates of glyphosate-based herbicide (GBH) may affect soil microbial communities. Our hypothesis was that the use of CC would promote the presence of certain microbial communities in soils and mitigate the potential impact of GBH on these communities. CC can promote biodiversity by increasing plant diversity in fields, while GBH may have non-target effects on species that utilize the shikimate pathway. Crop managements in an experimental field in Southern Québec (Canada) consisted in Glyphosate-based Herbicide (GBH) applications rates at 0.84, 1.67 and 3.33 L ha
−1 in corn, soybean and wheat fields cultivated with Direct Seeding along with CC (DSCC) and at 3.33 L ha−1 in similar crops cultivated with direct seeding but without CC (DS). DSCC did not significantly impact microbial richness compared to DS, but did alter specific abundance among prokaryotes and eukaryotes. A permutational multivariate analysis revealed that the type of crop (soybean, wheat, maize) significantly influenced the composition of eukaryotic communities in 2018 and 2019, but not prokaryotic communities. Importantly, the study identifies a cross-effect between CC and GBH application rates suggesting that herbicide use in soybean plots can influence Anaeromyxobacter populations. Also, higher abundance of Enoplea and Maxilopoda were observed in plots with the lower application rate of GBH. Both eukaryotes group are known to be sensitive to crop management. These findings emphasize the need for a holistic approach to agricultural practices, considering the combined effects of both CC and GBH application rates on soil microbial health. Ultimately, the study calls for sustainable agricultural practices that preserve microbial diversity, which is essential for maintaining ecosystem services and soil health. [ABSTRACT FROM AUTHOR]- Published
- 2025
- Full Text
- View/download PDF