1. Genome-wide microRNA profiling of plasma from three different animal models identifies biomarkers of temporal lobe epilepsy.
- Author
-
Brennan GP, Bauer S, Engel T, Jimenez-Mateos EM, Del Gallo F, Hill TDM, Connolly NMC, Costard LS, Neubert V, Salvetti B, Sanz-Rodriguez A, Heiland M, Mamad O, Brindley E, Norwood B, Batool A, Raoof R, El-Naggar H, Reschke CR, Delanty N, Prehn JHM, Fabene P, Mooney C, Rosenow F, and Henshall DC
- Subjects
- Animals, Anticonvulsants pharmacology, Blood-Brain Barrier metabolism, Circulating MicroRNA drug effects, Disease Models, Animal, Electric Stimulation, Epilepsy, Temporal Lobe blood, Epilepsy, Temporal Lobe chemically induced, Excitatory Amino Acid Agonists toxicity, Kainic Acid toxicity, Male, Mice, Muscarinic Agonists toxicity, Perforant Pathway, Pilocarpine toxicity, Rats, Circulating MicroRNA genetics, Epilepsy, Temporal Lobe genetics
- Abstract
Epilepsy diagnosis is complex, requires a team of specialists and relies on in-depth patient and family history, MRI-imaging and EEG monitoring. There is therefore an unmet clinical need for a non-invasive, molecular-based, biomarker to either predict the development of epilepsy or diagnose a patient with epilepsy who may not have had a witnessed seizure. Recent studies have demonstrated a role for microRNAs in the pathogenesis of epilepsy. MicroRNAs are short non-coding RNA molecules which negatively regulate gene expression, exerting profound influence on target pathways and cellular processes. The presence of microRNAs in biofluids, ease of detection, resistance to degradation and functional role in epilepsy render them excellent candidate biomarkers. Here we performed the first multi-model, genome-wide profiling of plasma microRNAs during epileptogenesis and in chronic temporal lobe epilepsy animals. From video-EEG monitored rats and mice we serially sampled blood samples and identified a set of dysregulated microRNAs comprising increased miR-93-5p, miR-142-5p, miR-182-5p, miR-199a-3p and decreased miR-574-3p during one or both phases. Validation studies found miR-93-5p, miR-199a-3p and miR-574-3p were also dysregulated in plasma from patients with intractable temporal lobe epilepsy. Treatment of mice with common anti-epileptic drugs did not alter the expression levels of any of the five miRNAs identified, however administration of an anti-epileptogenic microRNA treatment prevented dysregulation of several of these miRNAs. The miRNAs were detected within the Argonuate2-RISC complex from both neurons and microglia indicating these miRNA biomarker candidates can likely be traced back to specific brain cell types. The current studies identify additional circulating microRNA biomarkers of experimental and human epilepsy which may support diagnosis of temporal lobe epilepsy via a quick, cost-effective rapid molecular-based test., Competing Interests: Declaration of competing interest None., (Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF