1. A High-Throughput Dose-Response Cellular Thermal Shift Assay for Rapid Screening of Drug Target Engagement in Living Cells, Exemplified Using SMYD3 and IDO1.
- Author
-
McNulty DE, Bonnette WG, Qi H, Wang L, Ho TF, Waszkiewicz A, Kallal LA, Nagarajan RP, Stern M, Quinn AM, Creasy CL, Su DS, Graves AP, Annan RS, Sweitzer SM, and Holbert MA
- Subjects
- Cell Culture Techniques, Cell Line, Tumor, Dose-Response Relationship, Drug, Enzyme Activation, Histone-Lysine N-Methyltransferase genetics, Histone-Lysine N-Methyltransferase metabolism, Humans, Indoleamine-Pyrrole 2,3,-Dioxygenase genetics, Indoleamine-Pyrrole 2,3,-Dioxygenase metabolism, Small Molecule Libraries, Workflow, Drug Discovery methods, Enzyme Inhibitors pharmacology, High-Throughput Screening Assays, Histone-Lysine N-Methyltransferase antagonists & inhibitors, Indoleamine-Pyrrole 2,3,-Dioxygenase antagonists & inhibitors
- Abstract
A persistent problem in early small-molecule drug discovery is the frequent lack of rank-order correlation between biochemical potencies derived from initial screens using purified proteins and the diminished potency and efficacy observed in subsequent disease-relevant cellular phenotypic assays. The introduction of the cellular thermal shift assay (CETSA) has bridged this gap by enabling assessment of drug target engagement directly in live cells based on ligand-induced changes in protein thermal stability. Initial success in applying CETSA across multiple drug target classes motivated our investigation into replacing the low-throughput, manually intensive Western blot readout with a quantitative, automated higher-throughput assay that would provide sufficient capacity to use CETSA as a primary hit qualification strategy. We introduce a high-throughput dose-response cellular thermal shift assay (HTDR-CETSA), a single-pot homogenous assay adapted for high-density microtiter plate format. The assay features titratable BacMam expression of full-length target proteins fused to the DiscoverX 42 amino acid ePL tag in HeLa suspension cells, facilitating enzyme fragment complementation-based chemiluminescent quantification of ligand-stabilized soluble protein. This simplified format can accommodate determination of full-dose CETSA curves for hundreds of individual compounds/analyst/day in replicates. HTDR-CETSA data generated for substrate site and alternate binding mode inhibitors of the histone-lysine N-methyltransferase SMYD3 in HeLa suspension cells demonstrate excellent correlation with rank-order potencies observed in cellular mechanistic assays and direct translation to target engagement of endogenous Smyd3 in cancer-relevant cell lines. We envision this workflow to be generically applicable to HTDR-CETSA screening spanning a wide variety of soluble intracellular protein target classes.
- Published
- 2018
- Full Text
- View/download PDF