1. Assays, surrogates, and alternative technologies for a TB lead identification program targeting DNA gyrase ATPase.
- Author
-
Humnabadkar V, Madhavapeddi P, Basavarajappa H, Sheikh MG, Rane R, Basu R, Verma P, Sundaram A, Mukherjee K, and de Sousa SM
- Subjects
- Adenosine Triphosphatases genetics, DNA Gyrase genetics, Enzyme Assays methods, Inhibitory Concentration 50, Kinetics, Microbial Sensitivity Tests methods, Mycobacterium smegmatis drug effects, Mycobacterium smegmatis enzymology, Reproducibility of Results, Adenosine Triphosphatases antagonists & inhibitors, Antitubercular Agents pharmacology, DNA Gyrase metabolism, Enzyme Inhibitors pharmacology, High-Throughput Screening Assays methods, Mycobacterium tuberculosis drug effects, Mycobacterium tuberculosis enzymology
- Abstract
Mycobacterium tuberculosis (Mtb) DNA gyrase ATPase was the target of a tuberculosis drug discovery program. The low specific activity of the Mtb ATPase prompted the use of Mycobacterium smegmatis (Msm) enzyme as a surrogate for lead generation, since it had 20-fold higher activity. Addition of GyrA or DNA did not significantly increase the activity of the Msm GyrB ATPase, and an assay was developed using GyrB alone. Inhibition of the Msm ATPase correlated well with inhibition of Mtb DNA gyrase supercoiling across three chemical scaffolds, justifying its use. As the IC50 of compounds approached the enzyme concentration, surrogate assays were used to estimate potencies (e.g., the shift in thermal melt of Mtb GyrB, which correlated well with IC(50)s >10 nM). Analysis using the Morrison equation enabled determination of K(i)(app)s in the sub-nanomolar range. Surface plasmon resonance was used to confirm these IC(50)s and measure the K ds of binding, but a fragment of Mtb GyrB had to be used. Across three scaffolds, the dissociation half life, t1/2, of the inhibitor-target complex was ≤ 8 min. This toolkit of assays was developed to track the potency of enzyme inhibition and guide the chemistry for progression of compounds in a lead identification program., (© 2014 Society for Laboratory Automation and Screening.)
- Published
- 2015
- Full Text
- View/download PDF