1. Therapeutic inhibition of pro-inflammatory signaling and toxicity to staphylococcal enterotoxin B by a synthetic dimeric BB-loop mimetic of MyD88.
- Author
-
Kissner TL, Ruthel G, Alam S, Mann E, Ajami D, Rebek M, Larkin E, Fernandez S, Ulrich RG, Ping S, Waugh DS, Rebek J Jr, and Saikh KU
- Subjects
- Animals, Biomimetic Materials chemistry, Cytokines genetics, Cytokines metabolism, Humans, Mice, Mice, Inbred BALB C, Mice, Knockout, Myeloid Differentiation Factor 88 genetics, Protein Structure, Secondary, Protein Structure, Tertiary, Signal Transduction genetics, Biomimetic Materials pharmacology, Enterotoxins toxicity, Myeloid Differentiation Factor 88 metabolism, Signal Transduction drug effects
- Abstract
Staphylococcal enterotoxin B (SEB) exposure triggers an exaggerated pro-inflammatory cytokine response that often leads to toxic shock syndrome (TSS) associated with organ failure and death. MyD88 mediates pro-inflammatory cytokine signaling induced by SEB exposure and MyD88(-/-) mice are resistant to SEB intoxication, suggesting that MyD88 may be a potential target for therapeutic intervention. We targeted the BB loop region of the Toll/IL-1 receptor (TIR) domain of MyD88 to develop small-molecule therapeutics. Here, we report that a synthetic compound (EM-163), mimic to dimeric form of BB-loop of MyD88 attenuated tumor necrosis factor (TNF)- α, interferon (IFN)-γ, interleukin (IL)-1β, IL-2 and IL-6 production in human primary cells, whether administered pre- or post-SEB exposure. Results from a direct binding assay, and from MyD88 co-transfection/co-immunoprecipitation experiments, suggest that EM-163 inhibits TIR-TIR domain interaction. Additional results indicate that EM-163 prevents MyD88 from mediating downstream signaling. In an NF-kB-driven reporter assay of lipopolysaccharide-stimulated MyD88 signaling, EM-163 demonstrated a dose-dependent inhibition of reporter activity as well as TNF-α and IL-1β production. Importantly, administration of EM-163 pre- or post exposure to a lethal dose of SEB abrogated pro-inflammatory cytokine responses and protected mice from toxic shock-induced death. Taken together, our results suggest that EM-163 exhibits a potential for therapeutic use against SEB intoxication.
- Published
- 2012
- Full Text
- View/download PDF