1. Myosin 5b is required for proper localization of the intermicrovillar adhesion complex in the intestinal brush border.
- Author
-
Dooley SA, Engevik KA, Digrazia J, Stubler R, Kaji I, Krystofiak E, and Engevik AC
- Subjects
- Animals, Mice, Cell Cycle Proteins metabolism, Cytoskeletal Proteins metabolism, Intestinal Mucosa metabolism, Intestines, Myosin Heavy Chains genetics, Myosin Heavy Chains metabolism, Enterocytes metabolism, Microvilli metabolism, Myosin Type V genetics, Myosin Type V metabolism
- Abstract
Intestinal enterocytes have an elaborate apical membrane of actin-rich protrusions known as microvilli. The organization of microvilli is orchestrated by the intermicrovillar adhesion complex (IMAC), which connects the distal tips of adjacent microvilli. The IMAC is composed of CDHR2 and CDHR5 as well as the scaffolding proteins USH1C, ANKS4B, and Myosin 7b (MYO7B). To create an IMAC, cells must transport the proteins to the apical membrane. Myosin 5b (MYO5B) is a molecular motor that traffics ion transporters to the apical membrane of enterocytes, and we hypothesized that MYO5B may also be responsible for the localization of IMAC proteins. To address this question, we used two different mouse models: 1 ) neonatal germline MYO5B knockout (MYO5B KO) mice and 2 ) adult intestinal-specific tamoxifen-inducible VillinCre
ERT2 ;MYO5Bflox/flox mice. In control mice, immunostaining revealed that CDHR2, CDHR5, USH1C, and MYO7B were highly enriched at the tips of the microvilli. In contrast, neonatal germline and adult MYO5B-deficient mice showed loss of apical CDHR2, CDHR5, and MYO7B in the brush border and accumulation in a subapical compartment. Colocalization analysis revealed decreased Mander's coefficients in adult inducible MYO5B-deficient mice compared with control mice for CDHR2, CDHR5, USH1C, and MYO7B. Scanning electron microscopy images further demonstrated aberrant microvilli packing in adult inducible MYO5B-deficient mouse small intestine. These data indicate that MYO5B is responsible for the delivery of IMAC components to the apical membrane. NEW & NOTEWORTHY The intestinal epithelium absorbs nutrients and water through an elaborate apical membrane of highly organized microvilli. Microvilli organization is regulated by the intermicrovillar adhesion complexes, which create links between neighboring microvilli and control microvilli packing and density. In this study, we report a new trafficking partner of the IMAC, Myosin 5b. Loss of Myosin 5b results in a disorganized brush border and failure of IMAC proteins to reach the distal tips of microvilli.- Published
- 2022
- Full Text
- View/download PDF