We address the problem of parameter estimation in the presence of plasmonic modes manipulating emitted light via the localized surface plasmons in a plasmonic waveguide at the nanoscale. The emitter that we discuss is the nitrogen vacancy centre (NVC) in diamond modelled as a qubit. Our goal is to estimate the β factor measuring the fraction of emitted energy captured by waveguide surface plasmons. The best strategy to obtain the most accurate estimation of the parameter, in terms of the initial state of the probes and different control parameters, is investigated. In particular, for two-qubit estimation, it is found although we may achieve the best estimation at initial instants by using the maximally entangled initial states, at long times, the optimal estimation occurs when the initial state of the probes is a product one. We also find that decreasing the interqubit distance or increasing the propagation length of the plasmons improve the precision of the estimation. Moreover, decrease of spontaneous emission rate of the NVCs retards the quantum Fisher information (QFI) reduction and therefore the vanishing of the QFI, measuring the precision of the estimation, is delayed. In addition, if the phase parameter of the initial state of the two NVCs is equal to π rad , the best estimation with the two-qubit system is achieved when initially the NVCs are maximally entangled. Besides, the one-qubit estimation has been also analysed in detail. Especially, we show that, using a two-qubit probe, at any arbitrary time, enhances considerably the precision of estimation in comparison with one-qubit estimation. [ABSTRACT FROM AUTHOR]