1. Carbamylated low-density lipoprotein induces endothelial dysfunction.
- Author
-
Speer T, Owala FO, Holy EW, Zewinger S, Frenzel FL, Stähli BE, Razavi M, Triem S, Cvija H, Rohrer L, Seiler S, Heine GH, Jankowski V, Jankowski J, Camici GG, Akhmedov A, Fliser D, Lüscher TF, and Tanner FC
- Subjects
- Acetylcholine pharmacology, Analysis of Variance, Animals, Aorta physiology, Cardiovascular Diseases physiopathology, Enzyme Inhibitors pharmacology, Healthy Volunteers, Humans, In Vitro Techniques, Lipoproteins, LDL metabolism, Lipoproteins, LDL pharmacology, Mice, Inbred C57BL, Mice, Transgenic, Nitric Oxide Synthase Type III metabolism, Onium Compounds pharmacology, Reactive Oxygen Species metabolism, Renal Insufficiency, Chronic metabolism, Renal Insufficiency, Chronic physiopathology, Scavenger Receptors, Class E metabolism, Vasodilation drug effects, Vasodilator Agents pharmacology, Endothelium, Vascular physiopathology, Lipoproteins, LDL physiology
- Abstract
Aims: Cardiovascular events remain the leading cause of death in Western world. Atherosclerosis is the most common underlying complication driven by low-density lipoproteins (LDL) disturbing vascular integrity. Carbamylation of lysine residues, occurring primarily in the presence of chronic kidney disease (CKD), may affect functional properties of lipoproteins; however, its effect on endothelial function is unknown., Methods and Results: Low-density lipoprotein from healthy donors was isolated and carbamylated. Vascular reactivity after treatment with native LDL (nLDL) or carbamylated LDL (cLDL) was examined in organ chambers for isometric tension recording using aortic rings of wild-type or lectin-like-oxidized LDL receptor-1 (LOX-1) transgenic mice. Reactive oxygen species (ROS) and nitric oxide (NO) production were determined using electron spin resonance spectroscopy. The effect of LDL-carbamyl-lysine levels on cardiovascular outcomes was determined in patients with CKD during a median follow-up of 4.7 years. Carbamylated LDL impaired endothelium-dependent relaxation to acetylcholine or calcium-ionophore A23187, but not endothelium-independent relaxation to sodium nitroprusside. In contrast, nLDL had no effect. Carbamylated LDL enhanced aortic ROS production by activating NADPH-oxidase. Carbamylated LDL stimulated endothelial NO synthase (eNOS) uncoupling at least partially by promoting S-glutathionylation of eNOS. Carbamylated LDL-induced endothelial dysfunction was enhanced in LOX-1 transgenic mice. In patients with CKD, LDL-carbamyl-lysine levels were significant predictors for cardiovascular events and all-cause mortality., Conclusions: Carbamylation of LDL induces endothelial dysfunction via LOX-1 activation and increased ROS production leading to eNOS uncoupling. This indicates a novel mechanism in the pathogenesis of atherosclerotic disease which may be pathogenic and prognostic in patients with CKD and high plasma levels of cLDL., (Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.)
- Published
- 2014
- Full Text
- View/download PDF