1. Endogenous Retroviral Elements Generate Pathologic Neutrophils in Pulmonary Arterial Hypertension.
- Author
-
Taylor S, Isobe S, Cao A, Contrepois K, Benayoun BA, Jiang L, Wang L, Melemenidis S, Ozen MO, Otsuki S, Shinohara T, Sweatt AJ, Kaplan J, Moonen JR, Marciano DP, Gu M, Miyagawa K, Hayes B, Sierra RG, Kupitz CJ, Del Rosario PA, Hsi A, Thompson AAR, Ariza ME, Demirci U, Zamanian RT, Haddad F, Nicolls MR, Snyder MP, and Rabinovitch M
- Subjects
- Animals, Antiviral Agents, Elafin genetics, Elafin metabolism, Elafin pharmacology, Familial Primary Pulmonary Hypertension genetics, Humans, Integrins genetics, Integrins metabolism, Leukocyte Elastase metabolism, Mice, Neutrophils metabolism, Proteomics, Vinculin genetics, Vinculin metabolism, Endogenous Retroviruses metabolism, Hypertension, Pulmonary genetics, Pulmonary Arterial Hypertension
- Abstract
Rationale: The role of neutrophils and their extracellular vesicles (EVs) in the pathogenesis of pulmonary arterial hypertension is unclear. Objectives: To relate functional abnormalities in pulmonary arterial hypertension neutrophils and their EVs to mechanisms uncovered by proteomic and transcriptomic profiling. Methods: Production of elastase, release of extracellular traps, adhesion, and migration were assessed in neutrophils from patients with pulmonary arterial hypertension and control subjects. Proteomic analyses were applied to explain functional perturbations, and transcriptomic data were used to find underlying mechanisms. CD66b-specific neutrophil EVs were isolated from plasma of patients with pulmonary arterial hypertension, and we determined whether they produce pulmonary hypertension in mice. Measurements and Main Results: Neutrophils from patients with pulmonary arterial hypertension produce and release increased neutrophil elastase, associated with enhanced extracellular traps. They exhibit reduced migration and increased adhesion attributed to elevated β1-integrin and vinculin identified by proteomic analysis and previously linked to an antiviral response. This was substantiated by a transcriptomic IFN signature that we related to an increase in human endogenous retrovirus K envelope protein. Transfection of human endogenous retrovirus K envelope in a neutrophil cell line (HL-60) increases neutrophil elastase and IFN genes, whereas vinculin is increased by human endogenous retrovirus K deoxyuridine triphosphate diphosphatase that is elevated in patient plasma. Neutrophil EVs from patient plasma contain increased neutrophil elastase and human endogenous retrovirus K envelope and induce pulmonary hypertension in mice, mitigated by elafin, an elastase inhibitor. Conclusions: Elevated human endogenous retroviral elements and elastase link a neutrophil innate immune response to pulmonary arterial hypertension.
- Published
- 2022
- Full Text
- View/download PDF