1. Treatment of β-thujaplicin counteracts di(2-ethylhexyl)phthalate (DEHP)-exposed vascular smooth muscle activation, inflammation and atherosclerosis progression
- Author
-
Jong Yuh Cherng, Chia-Rui Shen, Chia-Chyuan Liu, Mei Fen Shih, and Kuang-Hung Pan
- Subjects
0301 basic medicine ,medicine.medical_specialty ,Vascular smooth muscle ,Cell ,Vascular Cell Adhesion Molecule-1 ,Inflammation ,030204 cardiovascular system & hematology ,Toxicology ,Muscle, Smooth, Vascular ,Tropolone ,Cell Line ,Mice ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Plasticizers ,Diethylhexyl Phthalate ,Internal medicine ,E-selectin ,medicine ,Animals ,VCAM-1 ,ICAM-1 ,biology ,Phthalate ,Endothelial Cells ,General Medicine ,Atherosclerosis ,Intercellular Adhesion Molecule-1 ,Rats ,RAW 264.7 Cells ,030104 developmental biology ,medicine.anatomical_structure ,Endocrinology ,Matrix Metalloproteinase 9 ,chemistry ,Cell culture ,Disease Progression ,Monoterpenes ,biology.protein ,Matrix Metalloproteinase 2 ,medicine.symptom ,E-Selectin - Abstract
The initiation of atherosclerosis involves up-regulation of molecules such as E-selectin, VCAM-1, and ICAM-1. The progression of atherosclerosis is linked to proliferation and migration of vascular smooth muscle cell via MMP-2 and MMP-9 activities. However, the etiology of atherosclerosis concerning plasticizers is unknown. We evaluated β-thujaplicin in preventing the development of atherosclerosis in a model induced by pro-inflammatory cytokines. Moreover, we established a new atherosclerosis model in vascular smooth muscle cells (VSMC) exposed to a common contact plasticizer, di(2-ethylhexyl)phthalate (DEHP). SEVC4-10 endothelial cells were treated with 50% RAW conditioned medium and A7r5 VSMC was treated with the plasticizer, with/without β-thujaplicin (4 or 12 μM). Production of E-selectin, ICAM-1, and VCAM-1 in SEVC4-10 cells as well as MMP-2/MMP-9 (both expression and activity) in VSMC were monitored. Results showed that the conditioned medium induced E-selectin and ICAM were significantly prevented by β-thujaplicin. However, inhibition on the production of VCAM by β-thujaplicin was only seen in a concentration of 12 μM. Both concentrations of β-thujaplicin also significantly prevented DEHP-induced MMP-2 and MMP-9 expression and activities. Evidence uncovers that β-thujaplicin has additional factors in amelioration of atherosclerosis and corroborates that β-thujaplicin is a strong candidate in preventing the initiation and progression of atherosclerosis.
- Published
- 2018