1. Detecting System Errors in Virtual Reality Using EEG Through Error-Related Potentials
- Author
-
Ferran Argelaguet, Maria Cristina Duarte, Reinhold Scherer, Catarina Lopes-Dias, Gernot Müller-Putz, Géry Casiez, Anatole Lécuyer, Camille Jeunet, Hakim Si-Mohammed, 3D interaction with virtual environments using body and mind (Hybrid), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-MEDIA ET INTERACTIONS (IRISA-D6), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Bretagne Sud (UBS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-CentraleSupélec-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Bretagne Sud (UBS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Graz University of Technology [Graz] (TU Graz), Faculty of Sciences of the University of Lisbon (OI-FCUL), Cognition, Langues, Langage, Ergonomie (CLLE), Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Toulouse - Jean Jaurès (UT2J), Université de Lille, Technology and knowledge for interaction (LOKI), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), School of Computer Science and Electronic Engineering [Essex] (CSEE), University of Essex, Région Bretagne, Université Bretagne et Loire, European Project: 681231,H2020,ERC-2015-CoG,Feel your Reach(2016), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), École Pratique des Hautes Études (EPHE), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)
- Subjects
Computer science ,media_common.quotation_subject ,02 engineering and technology ,Virtual reality ,Electroencephalography ,050105 experimental psychology ,03 medical and health sciences ,0302 clinical medicine ,0202 electrical engineering, electronic engineering, information engineering ,medicine ,0501 psychology and cognitive sciences ,Computer vision ,[INFO.INFO-HC]Computer Science [cs]/Human-Computer Interaction [cs.HC] ,media_common ,Creative visualization ,medicine.diagnostic_test ,business.industry ,Event (computing) ,05 social sciences ,020207 software engineering ,Human-centered computing ,Visualization ,Face (geometry) ,Artificial intelligence ,business ,030217 neurology & neurosurgery - Abstract
Virtual conference; International audience; When persons interact with the environment and experience or witness an error (e.g. an unexpected event), a specific brain pattern, known as error-related potential (ErrP) can be observed in the electroencephalographic signals (EEG). Virtual Reality (VR) technology enables users to interact with computer-generated simulated environments and to provide multi-modal sensory feedback. Using VR systems can, however, be error-prone. In this paper, we investigate the presence of ErrPs when Virtual Reality users face 3 types of visualization errors: (Te) tracking errors when manipulating virtual objects, (Fe) feedback errors, and (Be) background anomalies. We conducted an experiment in which 15 participants were exposed to the 3 types of errors while performing a center-out pick and place task in virtual reality. The results showed that tracking errors generate error-related potentials, the other types of errors did not generate such discernible patterns. In addition, we show that it is possible to detect the ErrPs generated by tracking losses in single trial, with an accuracy of 85%. This constitutes a first step towards the automatic detection of error-related potentials in VR applications, paving the way to the design of adaptive and self-corrective VR/AR applications by exploiting information directly from the user’s brain.
- Published
- 2020
- Full Text
- View/download PDF