1. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries.
- Author
-
Han H, Song T, Lee EK, Devadoss A, Jeon Y, Ha J, Chung YC, Choi YM, Jung YG, and Paik U
- Subjects
- Crystallization methods, Energy Transfer, Equipment Design, Equipment Failure Analysis, Ions, Particle Size, Electric Power Supplies, Electrodes, Lithium chemistry, Nanotechnology instrumentation, Nanotubes chemistry, Nanotubes ultrastructure, Titanium chemistry
- Abstract
Titanium dioxide (TiO(2)) is one of the most promising anode materials for lithium ion batteries due to low cost and structural stability during Li insertion/extraction. However, its poor rate capability limits its practical use. Although various approaches have been explored to overcome this problem, previous reports have mainly focused on the enhancement of both the electronic conductivity and the kinetic associated with lithium in the composite film of active material/conducting agent/binder. Here, we systematically explore the effect of the contact resistance between a current collector and a composite film of active material/conducting agent/binder on the rate capability of a TiO(2)-based electrode. The vertically aligned TiO(2) nanotubes arrays, directly grown on the current collector, with sealed cap and unsealed cap, and conventional randomly oriented TiO(2) nanotubes electrodes were prepared for this study. The vertically aligned TiO(2) nanotubes array electrode with unsealed cap showed superior performance with six times higher capacity at 10 C rate compared to conventional randomly oriented TiO(2) nanotubes electrode with 10 wt % conducting agent. On the basis of the detailed experimental results and associated theoretical analysis, we demonstrate that the reduction of the contact resistance between electrode and current collector plays an important role in improving the electronic conductivity of the overall electrode system.
- Published
- 2012
- Full Text
- View/download PDF