The effect of gold substrate surface charge (potential) on adsorptive/desorptive behaviour of fibrinogen (FG) was studied by employing differential capacitance (DC) and polarization modulated infrared reflection absorption spectroscopy (PM-IRRAS), in terms of FG adsorption thermodynamics, kinetics, and desorption kinetics. The gold substrate surface charge was modulated in-situ within the electrochemical double-layer region by means of electrochemical potentiostatic polarization in a FG-containing electrolyte, thus avoiding the interference of other physico-chemical properties of the gold surface on FG’s interfacial behaviour. The FG adsorption equilibrium was modeled using the Langmuir isotherm. Highly negative values of apparent Gibbs free energy of adsorption (ranging from from −52.1 ± 0.4 to −55.8 ± 0.8 kJ mol −1 , depending on the FG adsorption potential) indicated a highly spontaneous and strong adsorption of FG onto the gold surface. The apparent Gibbs free energy of adsorption was found to be independent of surface charge when the surface was negatively charged. However, when the gold surface was positively charged, the apparent Gibbs free energy of adsorption exhibited a pronounced linear relationship with the surface charge, shifting to more negative values with an increase in positive electrode potential. The adsorption kinetics of FG was also found to be dependent on gold surface charge in a similar manner to the apparent Gibbs free energy of adsorption. It was suggested that the driving force for the adsorption of FG on a negatively charged surface represents a positive gain in the entropy of the system, whereas the adsorption on a positively charged gold surface was found to be controlled by electrostatic forces. FG desorption measurements revealed that when the gold surface is polarized within the electrochemical double-layer region during the desorption process, the protein desorption kinetics is rather slow. However, within the regions of hydrogen and oxygen evolution, the FG desorption kinetics accelerates significantly, due to the physical removal of the adsorbed protein layer by gas bubbles evolving from the substrate surface, which enables a complete removal of the pre-adsorbed FG layer. The latter could potentially be employed for electrochemical cleaning of electrically-conducting surfaces fouled by adsorbed protein layers (heat exchangers, filtration membranes, etc.). [ABSTRACT FROM AUTHOR]