1. Wide electrochemical window of screen-printed electrode for determination of rapamycin using ionic liquid/graphene composites.
- Author
-
Chaiyo S, Jampasa S, Thongchue N, Mehmeti E, Siangproh W, Chailapakul O, and Kalcher K
- Subjects
- Electrochemical Techniques instrumentation, Electrochemical Techniques standards, Electrodes, Graphite, Ionic Liquids, Limit of Detection, Sirolimus blood, Sirolimus urine, Electrochemical Techniques methods, Sirolimus analysis
- Abstract
A disposable screen-printed carbon electrode (SPCE) modified with an ionic liquid/graphene composite (IL/G) exhibits a wider potential window, excellent conductivity, and specific surface area for the improvement in the voltammetric signal of rapamycin detection. The modified composite was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of rapamycin at the modified SPCE was investigated by cyclic and square wave voltammetry in 60:40 EtOH: 0.1 M LiClO
4 at pH 5.0. A high reproducible and well-defined peak with a high peak current were obtained for rapamycin detection at a position potential of + 0.98 V versus Ag/AgCl. Under the optimized conditions, the rapamycin concentration in the range 0.1 to 100 μM (R2 = 0.9986) had a good linear relation with the peak current. The detection limit of this method was 0.03 μM (3SD/slope). The proposed device can selectively detect rapamycin in the presence of commonly interfering compounds. Finally, the proposed method was successfully applied to determine rapamycin in urine and blood samples with excellent recoveries. These devices are disposable and cost-effective and might be used as an alternative tool for detecting rapamycin in biological samples and other biological compounds. Graphical abstract Schematic presentation of wide electrochemical window and disposable screen-printed sensor using ionic liquid/graphene composite for the determination of rapamycin. This composite can enhance the oxidation current and expand the potential for rapamycin detection.- Published
- 2020
- Full Text
- View/download PDF