1. Mammals show faster recovery from capture and tagging in human-disturbed landscapes.
- Author
-
Stiegler J, Gallagher CA, Hering R, Müller T, Tucker M, Apollonio M, Arnold J, Barker NA, Barthel L, Bassano B, Beest FMV, Belant JL, Berger A, Beyer DE Jr, Bidner LR, Blake S, Börner K, Brivio F, Brogi R, Buuveibaatar B, Cagnacci F, Dekker J, Dentinger J, Duľa M, Duquette JF, Eccard JA, Evans MN, Ferguson AW, Fichtel C, Ford AT, Fowler NL, Gehr B, Getz WM, Goheen JR, Goossens B, Grignolio S, Haugaard L, Hauptfleisch M, Heim M, Heurich M, Hewison MAJ, Isbell LA, Janssen R, Jarnemo A, Jeltsch F, Miloš J, Kaczensky P, Kamiński T, Kappeler P, Kasper K, Kautz TM, Kimmig S, Kjellander P, Kowalczyk R, Kramer-Schadt S, Kröschel M, Krop-Benesch A, Linderoth P, Lobas C, Lokeny P, Lührs ML, Matsushima SS, McDonough MM, Melzheimer J, Morellet N, Ngatia DK, Obermair L, Olson KA, Patanant KC, Payne JC, Petroelje TR, Pina M, Piqué J, Premier J, Pufelski J, Pyritz L, Ramanzin M, Roeleke M, Rolandsen CM, Saïd S, Sandfort R, Schmidt K, Schmidt NM, Scholz C, Schubert N, Selva N, Sergiel A, Serieys LEK, Silovský V, Slotow R, Sönnichsen L, Solberg EJ, Stelvig M, Street GM, Sunde P, Svoboda NJ, Thaker M, Tomowski M, Ullmann W, Vanak AT, Wachter B, Webb SL, Wilmers CC, Zieba F, Zwijacz-Kozica T, and Blaum N
- Subjects
- Animals, Humans, Male, Female, Locomotion physiology, Herbivory physiology, Animals, Wild physiology, Behavior, Animal physiology, Species Specificity, Mammals physiology, Ecosystem
- Abstract
Wildlife tagging provides critical insights into animal movement ecology, physiology, and behavior amid global ecosystem changes. However, the stress induced by capture, handling, and tagging can impact post-release locomotion and activity and, consequently, the interpretation of study results. Here, we analyze post-tagging effects on 1585 individuals of 42 terrestrial mammal species using collar-collected GPS and accelerometer data. Species-specific displacements and overall dynamic body acceleration, as a proxy for activity, were assessed over 20 days post-release to quantify disturbance intensity, recovery duration, and speed. Differences were evaluated, considering species-specific traits and the human footprint of the study region. Over 70% of the analyzed species exhibited significant behavioral changes following collaring events. Herbivores traveled farther with variable activity reactions, while omnivores and carnivores were initially less active and mobile. Recovery duration proved brief, with alterations diminishing within 4-7 tracking days for most species. Herbivores, particularly males, showed quicker displacement recovery (4 days) but slower activity recovery (7 days). Individuals in high human footprint areas displayed faster recovery, indicating adaptation to human disturbance. Our findings emphasize the necessity of extending tracking periods beyond 1 week and particular caution in remote study areas or herbivore-focused research, specifically in smaller mammals., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF