4 results on '"Baoli Fan"'
Search Results
2. Functional Traits of Male and Female Leaves of Hippophae tibetana on the Eastern Edge of the Tibetan Plateau and Their Altitudinal Variability
- Author
-
Baoli Fan, Zongqi Ma, Pengfei Gao, Jing Lu, Nana Ding, and Kun Sun
- Subjects
Ecology ,Plant Science ,Ecology, Evolution, Behavior and Systematics ,Tibetan plateau ,altitude ,dioecious ,Hippophae tibetana Schlecht ,leaf functional traits - Abstract
To date, there have been few studies of the functional traits of the dioecious Hippophae tibetana Schlecht leaves, either male or female, in response to ecological factors such as altitude. Elucidating these relationships will establish an important scientific basis for vegetation restoration and reconstruction of the Tibetan Plateau ecosystem. The natural populations of H. tibetana, distributed across three field sites, at 2868 m, 3012 m and 3244 m, in Tianzhu, Gansu, were studied by field survey sampling and laboratory analysis. In particular, the adaptions of leaf functional traits to elevation in these dioecious plants were analyzed. The results show that: (1) there is no “midday depression” of photosynthetic activity in either male or female plants. Over a one-day period, the net photosynthetic rate (Pn) and transpiration rate (Tr) of H. tibetana female plants were higher than those of male plants (p < 0.05). This correlated to the period of vigorous fruit growth in the female plant. The measured Pn and Tr were maximal at the intermediate altitude (3012 m). The light compensation point (LCP) of the leaves of male and female plants were 57.6 and 43.2 μmol·m−2·s−1, respectively, and the light saturation points (LSP) of the leaves were 1857.6 and 1596.8 μmol·m−2·s−1. (2) Altitude had a significant effect on plant and leaf functional traits of male and female H. tibetana (p < 0.05), and no significant difference was noted between plants at the same altitude. The values for leaf area (LA), specific leaf weight (LMA), leaf phosphorus content per unit mass (Pmass) and leaf phosphorus content per unit area (Parea) were also maximal at the intermediate altitude. Leaf nitrogen content per unit area (Narea) and leaf nitrogen content per unit mass (Nmass) increased with altitude. This indicated that the functional traits of male and female plants and leaves of H. tibetana showed a strong “trade-off relationship” with altitude. (3) Pearson correlation analysis showed that there were significant correlations among functional traits of H. tibetana leaves. Redundancy analysis (RDA) showed that soil water content (SWC), altitude (Alt) and soil organic carbon (SOC) had significant effects on the functional traits of H. tibetana leaves (p < 0.05).
- Published
- 2022
- Full Text
- View/download PDF
3. Factors influencing the natural regeneration of the pioneering shrubCalligonum mongolicumin sand dune stabilization plantations in arid deserts of northwest China
- Author
-
A. D. McHugh, Guo Shujiang, Changming Zhao, Qiushi Yu, Quanlin Ma, Weixing Zhang, Juan Du, Xiaojuan Zhang, Jianhui Zhang, and Baoli Fan
- Subjects
0106 biological sciences ,education.field_of_study ,Pioneer species ,Ecology ,Soil seed bank ,Population ,Soil classification ,Silt ,Soil type ,010603 evolutionary biology ,01 natural sciences ,Sand dune stabilization ,Agronomy ,Soil compaction ,Environmental science ,education ,Ecology, Evolution, Behavior and Systematics ,010606 plant biology & botany ,Nature and Landscape Conservation - Abstract
Calligonum mongolicum is a successful pioneer shrub to combat desertification, which is widely used for vegetation restoration in the desert regions of northwest China. In order to reveal the limitations to natural regeneration of C. mongolicum by asexual and sexual reproduction, following the process of sand dune stabilization, we assessed clonal shoots, seedling emergence, soil seed bank density, and soil physical characteristics in mobile and stabilized sand dunes. Controlled field and pot experiments were also conducted to assess germination and seedling emergence in different dune soil types and seed burial depths. The population density of mature C. mongolicum was significantly different after sand dune stabilization. Juvenile density of C. mongolicm was much lower in stabilized sand dunes than mobile sand dune. There was no significant difference in soil seed bank density at three soil depths between mobile and stabilized sand dunes, while the emergence of seedlings in stabilized dunes was much lower than emergence in mobile dunes. There was no clonal propagation found in stabilized dunes, and very few C. mongolicum seedlings were established on stabilized sand dunes. Soil clay and silt content, air-filled porosity, and soil surface compaction were significantly changed from mobile sand dune to stabilized dunes. Seedling emergence of C. mongolicm was highly dependent on soil physical condition. These results indicated that changes in soil physical condition limited clonal propagation and seedling emergence of C. mongolicum in stabilized sand dunes. Seed bank density was not a limiting factor; however, poor seedling establishment limited C. mongolicum's further natural regeneration in stabilized sand dunes. Therefore, clonal propagation may be the most important mode for population expansion in mobile sand dunes. As a pioneer species C. mongolicum is well adapted to propagate in mobile sand dune conditions, it appears unlikely to survive naturally in stabilized sand dune plantations.
- Published
- 2018
4. Effect of flowering time on floral sexual durations and phenotypic gender in dichogamous Aconitum gymnandrum
- Author
-
Baoli Fan, Lin Li, Zhi-Gang Zhao, and Ning-Na Lu
- Subjects
education.field_of_study ,Ecology ,Reproductive success ,Phenology ,fungi ,Population ,food and beverages ,Zoology ,Biology ,Inflorescence ,Botany ,Mating ,education ,Sexual function ,Ecology, Evolution, Behavior and Systematics ,Sex allocation ,Sex ratio ,Nature and Landscape Conservation - Abstract
The flowering time plays an important role in the mating opportunities of male and female functions and final reproductive success in plants. The mating environment hypothesis predicts that the differences of flowering time in protandrous species can change individual's phenotypic gender and the mating environment within a population, finally affect the optimal allocation of resources to sexual functions. To determine the effect of flowering time on sexual durations and phenotypic gender in protandrous plants, we recorded the male and female phase durations of all flowers in protandrous Aconitum gymnandrum (Ranunculaceae), and examined the relationships of flowering phenology and floral sexual durations and phenotypic gender. The results showed that the late flowers (top) had longer male duration versus female duration compared to early those (basal) within a inflorescence, showing temporally male-biased allocation. The relatively temporal allocations to both sexual durations also presented a similar trend among plants with different flowering time. Relatively longer male duration vs. female duration in the later flowers or late-flowering individuals, showed temporally male-biased allocation. Furthermore, individual's variation in flowering time affected floral sex ratio within population and the dynamics of phenotypic gender of individuals. It showed a shift from male-biased to female-biased gender during flowering season in A. gymnandrum population, because most of the individuals had only male-phase flowers at the beginning of flowering stage and only female- phase flowers at the end. Therefore, mean phenotypic gender of individuals shifted from femaleness to maleness with flowering time. Our results support the mating environment hypothesis, i.e. male-biased floral sexual ratio (mating environment) early in protandrous A. gymnandrum population leads to female-biased phenotypic gender of individuals flowered early and thus female-biased temporal sex allocation in early-flowering individuals and early flowers within inflorescences in comparison with the late-flowering individuals and late flowers.
- Published
- 2016
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.