1. Species' range model metadata standards: RMMS.
- Author
-
Merow, Cory, Maitner, Brian S., Owens, Hannah L., Kass, Jamie M., Enquist, Brian J., Jetz, Walter, Guralnick, Rob, and Guisan, Antoine
- Subjects
- *
METADATA , *TECHNICAL reports , *COMMUNICATION barriers , *SCIENTIFIC community , *RESEARCH teams , *SPECIES , *ECOLOGICAL models , *ECOLOGICAL niche - Abstract
Aim: The geographic range and ecological niche of species are widely used concepts in ecology, evolution and conservation and many modelling approaches have been developed to quantify each. Niche and distribution modelling methods require a litany of design choices; differences among subdisciplines have created communication barriers that increase isolation of scientific advances. As a result, understanding and reproducing the work of others is difficult, if not impossible. It is often challenging to evaluate whether a model has been built appropriately for its intended application or subsequent reuse. Here, we propose a standardized model metadata framework that enables researchers to understand and evaluate modelling decisions while making models fully citable and reproducible. Such reproducibility is critical for both scientific and policy reports, while international standardization enables better comparison between different scenarios and research groups. Innovation: Range modelling metadata (RMMS) address three challenges: they (a) are designed for convenience to encourage use, (b) accommodate a wide variety of applications, and (c) are extensible to allow the research community to steer them as needed. RMMS are based on a metadata dictionary that specifies a hierarchical structure to catalogue different aspects of the range modelling process. The dictionary balances a constrained, minimalist vocabulary to improve standardization with flexibility for users to modify and extend. To facilitate use, we have developed an R package, rangeModelMetaData, to build templates, automatically fill values from common modelling objects, check for inconsistencies with standards, and suggest values. Main conclusions: Range Modelling Metadata tools foster cross‐disciplinary advances in biogeography, conservation and allied disciplines by improving evaluation, model sharing, model searching, comparisons and reproducibility among studies. Our initially proposed standards here are designed to be modified and extended to evolve with research trends and needs. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF