1. A reflective, metal-rich atmosphere for GJ 1214b from its JWST phase curve
- Author
-
Eliza M.-R. Kempton, Michael Zhang, Jacob L. Bean, Maria E. Steinrueck, Anjali A. A. Piette, Vivien Parmentier, Isaac Malsky, Michael T. Roman, Emily Rauscher, Peter Gao, Taylor J. Bell, Qiao Xue, Jake Taylor, Arjun B. Savel, Kenneth E. Arnold, Matthew C. Nixon, Kevin B. Stevenson, Megan Mansfield, Sarah Kendrew, Sebastian Zieba, Elsa Ducrot, Achrène Dyrek, Pierre-Olivier Lagage, Keivan G. Stassun, Gregory W. Henry, Travis Barman, Roxana Lupu, Matej Malik, Tiffany Kataria, Jegug Ih, Guangwei Fu, Luis Welbanks, and Peter McGill
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Multidisciplinary ,FOS: Physical sciences ,Astrophysics - Earth and Planetary Astrophysics - Abstract
There are no planets intermediate in size between Earth and Neptune in our Solar System, yet these objects are found around a substantial fraction of other stars. Population statistics show that close-in planets in this size range bifurcate into two classes based on their radii. It is hypothesized that the group with larger radii (referred to as "sub-Neptunes") is distinguished by having hydrogen-dominated atmospheres that are a few percent of the total mass of the planets. GJ 1214b is an archetype sub-Neptune that has been observed extensively using transmission spectroscopy to test this hypothesis. However, the measured spectra are featureless, and thus inconclusive, due to the presence of high-altitude aerosols in the planet's atmosphere. Here we report a spectroscopic thermal phase curve of GJ 1214b obtained with JWST in the mid-infrared. The dayside and nightside spectra (average brightness temperatures of 553 $\pm$ 9 and 437 $\pm$ 19 K, respectively) each show >3$\sigma$ evidence of absorption features, with H$_2$O as the most likely cause in both. The measured global thermal emission implies that GJ 1214b's Bond albedo is 0.51 $\pm$ 0.06. Comparison between the spectroscopic phase curve data and three-dimensional models of GJ 1214b reveal a planet with a high metallicity atmosphere blanketed by a thick and highly reflective layer of clouds or haze., Comment: Published online in Nature on May 10, 2023
- Published
- 2023