1. Targeting the glutamine metabolism to suppress cell proliferation in mesenchymal docetaxel-resistant prostate cancer.
- Author
-
Beier AK, Ebersbach C, Siciliano T, Scholze J, Hofmann J, Hönscheid P, Baretton GB, Woods K, Guezguez B, Dubrovska A, Markowitsch SD, Thomas C, Puhr M, and Erb HHH
- Subjects
- Male, Humans, Cell Line, Tumor, Oxidative Phosphorylation drug effects, Glutaminase metabolism, Glutaminase antagonists & inhibitors, Glutaminase genetics, Antineoplastic Agents pharmacology, Antineoplastic Agents therapeutic use, Glutamine metabolism, Docetaxel pharmacology, Prostatic Neoplasms pathology, Prostatic Neoplasms metabolism, Prostatic Neoplasms drug therapy, Prostatic Neoplasms genetics, Drug Resistance, Neoplasm, Cell Proliferation drug effects
- Abstract
Docetaxel (DX) serves as a palliative treatment option for metastatic prostate cancer (PCa). Despite initial remission, acquired DX resistance is inevitable. The mechanisms behind DX resistance have not yet been deciphered, but a mesenchymal phenotype is associated with DX resistance. Mesenchymal phenotypes have been linked to metabolic rewiring, obtaining most ATP production by oxidative phosphorylation (OXPHOS) powered substantially by glutamine (Gln). Likewise, Gln is known to play an essential role in modulating bioenergetic, redox homeostasis and autophagy. Herein, investigations of Gln deprivation on DX-sensitive and -resistant (DR) PCa cells revealed that the DR cell sub-lines were susceptible to Gln deprivation. Mechanistically, Gln deprivation reduced OXPHOS and ATP levels, causing a disturbance in cell cycle progression. Genetic and chemical inhibition of the Gln-metabolism key protein GLS1 could validate the Gln deprivation results, thereby representing a valid therapeutic target. Moreover, immunohistological investigation of GLS1 revealed a high-expressing GLS1 subgroup post-docetaxel failure, exhibiting low overall survival. This subgroup presents an intriguing opportunity for targeted therapy focusing on glutamine metabolism. Thus, these findings highlight a possible clinical rationale for the chemical inhibition of GLS1 as a therapeutic strategy to target mesenchymal DR PCa cells, thereby delaying accelerated tumour progression., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF