1. KUALA: a machine learning-driven framework for kinase inhibitors repositioning.
- Author
-
De Simone G, Sardina DS, Gulotta MR, and Perricone U
- Subjects
- Ligands, Machine Learning, Protein Kinases genetics, Drug Repositioning methods, Drug Discovery methods
- Abstract
The family of protein kinases comprises more than 500 genes involved in numerous functions. Hence, their physiological dysfunction has paved the way toward drug discovery for cancer, cardiovascular, and inflammatory diseases. As a matter of fact, Kinase binding sites high similarity has a double role. On the one hand it is a critical issue for selectivity, on the other hand, according to poly-pharmacology, a synergistic controlled effect on more than one target could be of great pharmacological interest. Another important aspect of binding similarity is the possibility of exploit it for repositioning of drugs on targets of the same family. In this study, we propose our approach called Kinase drUgs mAchine Learning frAmework (KUALA) to automatically identify kinase active ligands by using specific sets of molecular descriptors and provide a multi-target priority score and a repurposing threshold to suggest the best repurposable and non-repurposable molecules. The comprehensive list of all kinase-ligand pairs and their scores can be found at https://github.com/molinfrimed/multi-kinases ., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF