1. Heterologous synthesis of poly-γ-glutamic acid enhanced drought resistance in maize (Zea mays L.).
- Author
-
Ma H, Li C, Xiao N, Liu J, Li P, Xu J, Yan J, Zhang S, and Xia T
- Subjects
- Stress, Physiological genetics, Gene Expression Regulation, Plant, Bacillus licheniformis genetics, Bacillus licheniformis metabolism, Plant Leaves genetics, Drought Resistance, Zea mays genetics, Droughts, Polyglutamic Acid analogs & derivatives, Polyglutamic Acid biosynthesis, Plants, Genetically Modified genetics
- Abstract
Drought stress is the main factor restricting maize yield. Poly-γ-glutamic acid (γ-PGA), as a water-retaining agent and fertilizer synergist, could significantly improve the drought resistance and yield of many crops. However, its high production costs and unclear long-term impact on soil ecology limit its large-scale application. In this study, an environmentally friendly green material γ-PGA was heterologous synthesized in maize for the first time using the synthetic biology method. The genes (PgsA, PgsB, PgsC) participated in γ-PGA synthesis were cloned from Bacillus licheniformis and transformed into maize to produce γ-PGA for the first time. Under drought stress, transgenic maize significantly increased the ear length, ear weight and grain weight by 50 % compared to the control, whereas the yield characteristic of ear weight, grain number per ear, grain weight per ear and 100-grain weight increased by 1.67 %-2.33 %, 3.78 %-13.06 %, 8.41 %-22.06 %, 6.03 %-19.28 %, and 11.85 %-18.36 %, respectively under normal growth conditions. γ-PGA was mainly expressed in the mesophyll cells of maize leaf rosette structure and improved drought resistance and yield by protecting and increasing the expression of genes for the photosynthetic and carbon fixation. This study is an important exploration for maize drought stress molecular breeding and building resource-saving agriculture., Competing Interests: Declaration of competing interest The authors declare no conflict of interest., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF