5 results on '"Roel‐Touris, Jorge"'
Search Results
2. MARTINI-Based Protein-DNA Coarse-Grained HADDOCKing
- Author
-
Honorato, Rodrigo V., Roel-Touris, Jorge, Bonvin, Alexandre M. J. J., Sub NMR Spectroscopy, NMR Spectroscopy, Sub NMR Spectroscopy, and NMR Spectroscopy
- Subjects
0301 basic medicine ,Computer science ,biomolecular complexes ,Network topology ,Biochemistry, Genetics and Molecular Biology (miscellaneous) ,Biochemistry ,Force field (chemistry) ,03 medical and health sciences ,0302 clinical medicine ,Molecular Biosciences ,Technology and Code ,lcsh:QH301-705.5 ,Molecular Biology ,force field ,Energy landscape ,coarse-graining ,Rigid body ,Maxima and minima ,nucleic acids ,030104 developmental biology ,lcsh:Biology (General) ,Proof of concept ,Docking (molecular) ,030220 oncology & carcinogenesis ,docking ,Granularity ,Algorithm - Abstract
Modeling biomolecular assemblies is an important field in computational structural biology. The inherent complexity of their energy landscape and the computational cost associated with modeling large and complex assemblies are major drawbacks for integrative modeling approaches. The so-called coarse-graining approaches, which reduce the degrees of freedom of the system by grouping several atoms into larger “pseudo-atoms,” have been shown to alleviate some of those limitations, facilitating the identification of the global energy minima assumed to correspond to the native state of the complex, while making the calculations more efficient. Here, we describe and assess the implementation of the MARTINI force field for DNA into HADDOCK, our integrative modeling platform. We combine it with our previous implementation for protein-protein coarse-grained docking, enabling coarse-grained modeling of protein-nucleic acid complexes. The system is modeled using MARTINI topologies and interaction parameters during the rigid body docking and semi-flexible refinement stages of HADDOCK, and the resulting models are then converted back to atomistic resolution by an atom-to-bead distance restraints-guided protocol. We first demonstrate the performance of this protocol using 44 complexes from the protein-DNA docking benchmark, which shows an overall ~6-fold speed increase and maintains similar accuracy as compared to standard atomistic calculations. As a proof of concept, we then model the interaction between the PRC1 and the nucleosome (a former CAPRI target in round 31), using the same information available at the time the target was offered, and compare all-atom and coarse-grained models.
- Published
- 2019
3. Modeling Antibody-Antigen Complexes by Information-Driven Docking
- Author
-
Ambrosetti, Francesco, Jiménez-García, Brian, Roel-Touris, Jorge, Bonvin, Alexandre M J J, NMR Spectroscopy, Sub NMR Spectroscopy, NMR Spectroscopy, and Sub NMR Spectroscopy
- Subjects
Models, Molecular ,Computer science ,Protein Conformation ,binding sites ,Computational biology ,Antigen-Antibody Complex ,Biochemistry ,Epitope ,Biological drugs ,Docking (molecular) ,Binding site ,03 medical and health sciences ,Epitopes ,Antigen ,Docking (dog) ,Structural Biology ,antibody ,Taverne ,H3 modeling ,ClusPro ,conformational changes ,LightDock ,Molecular Biology ,030304 developmental biology ,0303 health sciences ,030302 biochemistry & molecular biology ,ZDOCK ,Computational Biology ,HADDOCK ,3. Good health ,Molecular Docking Simulation ,docking ,Antibody antigen ,Algorithms - Abstract
Summary Antibodies are Y-shaped proteins essential for immune response. Their capability to recognize antigens with high specificity makes them excellent therapeutic targets. Understanding the structural basis of antibody-antigen interactions is therefore crucial for improving our ability to design efficient biological drugs. Computational approaches such as molecular docking are providing a valuable and fast alternative to experimental structural characterization for these complexes. We investigate here how information about complementarity-determining regions and binding epitopes can be used to drive the modeling process, and present a comparative study of four different docking software suites (ClusPro, LightDock, ZDOCK, and HADDOCK) providing specific options for antibody-antigen modeling. Their performance on a dataset of 16 complexes is reported. HADDOCK, which includes information to drive the docking, is shown to perform best in terms of both success rate and quality of the generated models in both the presence and absence of information about the epitope on the antigen.
- Published
- 2020
4. Blind prediction of homo- and hetero- protein complexes: The CASP13-CAPRI experiment
- Author
-
Lensink, Marc F., Brysbaert, Guillaume, Nadzirin, Nurul, Velankar, Sameer, Chaleil, Raphaël A. G., Gerguri, Tereza, Bates, Paul A., Laine, Elodie, Carbone, Alessandra, Grudinin, Sergei, Kong, Ren, Liu, Ran-Ran, Xu, Xi-Ming, Shi, Hang, Chang, Shan, Eisenstein, Miriam, Karczynska, Agnieszka, Czaplewski, Cezary, Lubecka, Emilia, Lipska, Agnieszka, Krupa, Paweł, Mozolewska, Magdalena, Golon, Łukasz, Samsonov, Sergey, Liwo, Adam, Crivelli, Silvia, Pagès, Guillaume, Karasikov, Mikhail, Kadukova, Maria, Yan, Yumeng, Huang, Sheng-You, Rosell, Mireia, Rodríguez-Lumbreras, Luis A., Romero-Durana, Miguel, Díaz-Bueno, Lucía, Fernandez-Recio, Juan, Christoffer, Charles, Terashi, Genki, Shin, Woong-Hee, Aderinwale, Tunde, Maddhuri Venkata Subraman, Sai Raghavendra, Kihara, Daisuke, Kozakov, Dima, Vajda, Sandor, Porter, Kathryn, Padhorny, Dzmitry, Desta, Israel, Beglov, Dmitri, Ignatov, Mikhail, Kotelnikov, Sergey, Moal, Iain H., Ritchie, David W., Chauvot de Beauchêne, Isaure, Maigret, Bernard, Devignes, Marie-Dominique, Ruiz Echartea, Maria E., Barradas-Bautista, Didier, Cao, Zhen, Cavallo, Luigi, Oliva, Romina, Cao, Yue, Shen, Yang, Baek, Minkyung, Park, Taeyong, Woo, Hyeonuk, Seok, Chaok, Braitbard, Merav, Bitton, Lirane, Scheidman-Duhovny, Dina, Dapkūnas, Justas, Olechnovič, Kliment, Venclovas, Česlovas, Kundrotas, Petras J., Belkin, Saveliy, Chakravarty, Devlina, Badal, Varsha D., Vakser, Ilya A., Vreven, Thom, Vangaveti, Sweta, Borrman, Tyler, Weng, Zhiping, Guest, Johnathan D., Gowthaman, Ragul, Pierce, Brian G., Xu, Xianjin, Duan, Rui, Qiu, Liming, Hou, Jie, Ryan Merideth, Benjamin, Ma, Zhiwei, Cheng, Jianlin, Zou, Xiaoqin, Koukos, Panagiotis I., Roel-Touris, Jorge, Ambrosetti, Francesco, Geng, Cunliang, Schaarschmidt, Jörg, Trellet, Mikael E., Melquiond, Adrien S. J., Xue, Li, Jiménez-García, Brian, van Noort, Charlotte W., Honorato, Rodrigo V., Bonvin, Alexandre M. J. J., Wodak, Shoshana J., 0000-0003-3957-9470, 0000-0003-2759-2088, 0000-0003-0621-0925, 0000-0003-2098-5743, 0000-0001-7169-9398, 0000-0002-0294-3403, 0000-0002-4209-4565, 0000-0002-7787-8896, 0000-0002-3986-7686, 0000-0002-6163-6323, 0000-0003-4091-6614, 0000-0003-0464-4500, 0000-0002-4960-5487, 0000-0002-7035-3042, 0000-0002-1703-7796, 0000-0002-1419-9888, 0000-0002-0496-6107, 0000-0002-4215-0213, 0000-0002-5743-2934, 0000-0003-3413-806X, 0000-0002-3032-7966, 0000-0002-1409-8358, 0000-0001-7369-1322, 0000-0002-0701-6545, Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576 (UGSF), Institut National de la Recherche Agronomique (INRA)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), European Bioinformatics Institute [Hinxton] (EMBL-EBI), EMBL Heidelberg, The Francis Crick Institute [London], School of Geographical Sciences [Bristol], University of Bristol [Bristol], Biologie Computationnelle et Quantitative = Laboratory of Computational and Quantitative Biology (LCQB), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Paris Seine (IBPS), Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Algorithms for Modeling and Simulation of Nanosystems (NANO-D), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Laboratoire Jean Kuntzmann (LJK ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), JiangSu University, Chemical Research Support [Rehovot], Weizmann Institute of Science [Rehovot, Israël], University of Gdańsk (UG), Department of Environmental Analytics [Univ Gdańsk], Faculty of Chemistry [Univ Gdańsk], University of Gdańsk (UG)-University of Gdańsk (UG), Institute of Physics [Warsaw] (IFPAN), Polish Academy of Sciences (PAN), Department of Computer Science [Davis] (UC Davis), University of California [Davis] (UC Davis), University of California-University of California, Moscow Institute of Physics and Technology [Moscow] (MIPT), Huazhong University of Science and Technology [Wuhan] (HUST), Barcelona Supercomputing Center - Centro Nacional de Supercomputacion (BSC - CNS), Purdue University [West Lafayette], Kitasato University, Stony Brook University [SUNY] (SBU), State University of New York (SUNY), Department of Biomedical Engineering [Boston], Boston University [Boston] (BU), Computational Algorithms for Protein Structures and Interactions (CAPSID), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Complex Systems, Artificial Intelligence & Robotics (LORIA - AIS), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), King Abdullah University of Science and Technology (KAUST), University of Naples Federico II, Service des Recherches Métallurgiques Appliquées (SRMA), Département des Matériaux pour le Nucléaire (DMN), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Department of Chemistry, Seoul National University [Seoul] (SNU), The Hebrew University of Jerusalem (HUJ), Vilnius University [Vilnius], Department of Molecular Biosciences [Lawrence], University of Kansas [Lawrence] (KU), University of Kansas [Kansas City], University of Massachusetts Medical School [Worcester] (UMASS), University of Massachusetts System (UMASS), Program in Bioinformatics and Integrative Biology [Worcester], University of Massachusetts System (UMASS)-University of Massachusetts System (UMASS), University of Maryland [Baltimore], Beijing University of Technology, University of Missouri [Columbia] (Mizzou), University of Missouri System, Bijvoet Center for Biomolecular Research [Utrecht], Utrecht University [Utrecht], Dalton Cardiovascular Research Center [Columbia], University of Missouri System-University of Missouri System, Shandong University, Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Université Paris-Sud - Paris 11 (UP11)-Sorbonne Université - UFR d'Ingénierie (UFR 919), Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE), University of California [Santa Cruz] (UCSC), University of California, The Hospital for sick children [Toronto] (SickKids), Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 (UGSF), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Institut des Hautes Etudes Scientifiques (IHES), IHES, The Francis Crick Institute, Institut de Biologie Paris Seine (IBPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut National Polytechnique de Grenoble (INPG), Weizmann Institute of Science, University of Gdańsk, Department of Environmental Analytics [Gdańsk], Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Technische Universität München [München] (TUM), CEA-Direction de l'Energie Nucléaire (CEA-DEN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction de l'Energie Nucléaire (CEA-DEN), University of Missouri [Columbia], Université Paris-Sud - Paris 11 (UP11)-Université Paris-Saclay-Sorbonne Université - UFR d'Ingénierie (UFR 919), Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE), Université de Lille, CNRS, Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576 [UGSF], Agence Nationale de la Recherche (France), Cancer Research UK, European Commission, Medical Research Council (UK), National Institutes of Health (US), National Natural Science Foundation of China, National Research Foundation of Korea, National Science Foundation (US), Ministerio de Economía y Competitividad (España), Università degli Studi di Napoli PARTHENOPE, Wellcome Trust, Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Algorithms for Modeling and Simulating Nanosystems [2018-...] (NANO-D-POST [2018-2020]), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Department of Computer Science [Univ California Davis] (CS - UC Davis), University of California (UC)-University of California (UC), University of Naples Federico II = Università degli studi di Napoli Federico II, University of California [Santa Cruz] (UC Santa Cruz), University of California (UC), and Grudinin, Sergei
- Subjects
Models, Molecular ,Computer science ,Protein Conformation ,Protein complexes ,Template‐based modeling ,Oligomeric state ,Biochemistry ,Docking ,protein-protein interaction ,Structural Biology ,Protein Interaction Mapping ,Taverne ,Blind prediction ,Protein assemblies ,Databases, Protein ,[INFO.INFO-BI] Computer Science [cs]/Bioinformatics [q-bio.QM] ,0303 health sciences ,oligomeric state ,030302 biochemistry & molecular biology ,protein assemblies ,computer.file_format ,3. Good health ,CASP ,docking ,blind prediction ,Protein‐protein interaction ,CAPRI ,proteincomplexes ,Algorithms ,Protein Binding ,protein complexes ,template-based modeling ,Computational biology ,Article ,Protein–protein interaction ,03 medical and health sciences ,protein‐protein interaction ,template‐based modeling ,Molecular Biology ,030304 developmental biology ,Binding Sites ,Computational Biology ,Proteins ,Protein Data Bank ,Docking (molecular) ,Structural Homology, Protein ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,computer ,Software - Abstract
We present the results for CAPRI Round 46, the third joint CASP‐CAPRI protein assembly prediction challenge. The Round comprised a total of 20 targets including 14 homo‐oligomers and 6 heterocomplexes. Eight of the homo‐oligomer targets and one heterodimer comprised proteins that could be readily modeled using templates from the Protein Data Bank, often available for the full assembly. The remaining 11 targets comprised 5 homodimers, 3 heterodimers, and two higher‐order assemblies. These were more difficult to model, as their prediction mainly involved “ab‐initio” docking of subunit models derived from distantly related templates. A total of ~30 CAPRI groups, including 9 automatic servers, submitted on average ~2000 models per target. About 17 groups participated in the CAPRI scoring rounds, offered for most targets, submitting ~170 models per target. The prediction performance, measured by the fraction of models of acceptable quality or higher submitted across all predictors groups, was very good to excellent for the nine easy targets. Poorer performance was achieved by predictors for the 11 difficult targets, with medium and high quality models submitted for only 3 of these targets. A similar performance “gap” was displayed by scorer groups, highlighting yet again the unmet challenge of modeling the conformational changes of the protein components that occur upon binding or that must be accounted for in template‐based modeling. Our analysis also indicates that residues in binding interfaces were less well predicted in this set of targets than in previous Rounds, providing useful insights for directions of future improvements., Agence Nationale de la Recherche, Grant/Award Number: ANR‐15‐CE11‐0029‐03; Cancer Research UK, Grant/Award Number: FC001003; H2020 European Institute of Innovation and Technology, Grant/Award Numbers: 675728, 777536, 823830; Lietuvos Mokslo Taryba, Grant/Award Number: S‐MIP‐17‐60; Medical Research Council, Grant/Award Number: FC001003; National Institutes of Health, Grant/Award Numbers: R01GM074255, R01GM123055, R35GM124952; National Natural Science Foundation of China, Grant/Award Number: 31670724; National Research Foundation of Korea, Grant/Award Number: 2016M3C4A7952630; National Science Foundation, Grant/Award Number: DBI1565107; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, Grant/Award Number: 718.015.001; Spanish >Programma Estatal I+D+i>, Grant/Award Number: BIO2016‐79930‐R; University Parthenope, Grant/Award Number: Finanziamento per il Sostegno alla Ricerca Individ; Wellcome Trust, Grant/Award Number: FC001003
- Published
- 2019
- Full Text
- View/download PDF
5. Performance of HADDOCK and a simple contact-based protein-ligand binding affinity predictor in the D3R Grand Challenge 2.
- Author
-
Kurkcuoglu, Zeynep, Koukos, Panagiotis I., Citro, Nevia, Trellet, Mikael E., Rodrigues, J. P. G. L. M., Moreira, Irina S., Roel-Touris, Jorge, Melquiond, Adrien S. J., Geng, Cunliang, Schaarschmidt, Jörg, Xue, Li C., Vangone, Anna, and Bonvin, A. M. J. J.
- Subjects
PROTEIN-ligand interactions ,LIGAND binding (Biochemistry) ,MOLECULAR docking ,COMPUTER software ,DRUG design - Abstract
We present the performance of HADDOCK, our information-driven docking software, in the second edition of the D3R Grand Challenge. In this blind experiment, participants were requested to predict the structures and binding affinities of complexes between the Farnesoid X nuclear receptor and 102 different ligands. The models obtained in Stage1 with HADDOCK and ligand-specific protocol show an average ligand RMSD of 5.1 Å from the crystal structure. Only 6/35 targets were within 2.5 Å RMSD from the reference, which prompted us to investigate the limiting factors and revise our protocol for Stage2. The choice of the receptor conformation appeared to have the strongest influence on the results. Our Stage2 models were of higher quality (13 out of 35 were within 2.5 Å), with an average RMSD of 4.1 Å. The docking protocol was applied to all 102 ligands to generate poses for binding affinity prediction. We developed a modified version of our contact-based binding affinity predictor PRODIGY, using the number of interatomic contacts classified by their type and the intermolecular electrostatic energy. This simple structure-based binding affinity predictor shows a Kendall's Tau correlation of 0.37 in ranking the ligands (7th best out of 77 methods, 5th/25 groups). Those results were obtained from the average prediction over the top10 poses, irrespective of their similarity/correctness, underscoring the robustness of our simple predictor. This results in an enrichment factor of 2.5 compared to a random predictor for ranking ligands within the top 25%, making it a promising approach to identify lead compounds in virtual screening. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.