1. A novel Fanconi anaemia subtype associated with a dominant-negative mutation in RAD51.
- Author
-
Ameziane N, May P, Haitjema A, van de Vrugt HJ, van Rossum-Fikkert SE, Ristic D, Williams GJ, Balk J, Rockx D, Li H, Rooimans MA, Oostra AB, Velleuer E, Dietrich R, Bleijerveld OB, Maarten Altelaar AF, Meijers-Heijboer H, Joenje H, Glusman G, Roach J, Hood L, Galas D, Wyman C, Balling R, den Dunnen J, de Winter JP, Kanaar R, Gelinas R, and Dorsman JC
- Subjects
- Acid Anhydride Hydrolases, Base Sequence, DNA Damage, DNA Repair, DNA Repair Enzymes metabolism, DNA-Binding Proteins metabolism, Fanconi Anemia genetics, Humans, Male, Molecular Sequence Data, Recombination, Genetic, Young Adult, DNA Repair Enzymes genetics, DNA-Binding Proteins genetics, Fanconi Anemia enzymology, Mutation, Missense
- Abstract
Fanconi anaemia (FA) is a hereditary disease featuring hypersensitivity to DNA cross-linker-induced chromosomal instability in association with developmental abnormalities, bone marrow failure and a strong predisposition to cancer. A total of 17 FA disease genes have been reported, all of which act in a recessive mode of inheritance. Here we report on a de novo g.41022153G>A; p.Ala293Thr (NM_002875) missense mutation in one allele of the homologous recombination DNA repair gene RAD51 in an FA-like patient. This heterozygous mutation causes a novel FA subtype, 'FA-R', which appears to be the first subtype of FA caused by a dominant-negative mutation. The patient, who features microcephaly and mental retardation, has reached adulthood without the typical bone marrow failure and paediatric cancers. Together with the recent reports on RAD51-associated congenital mirror movement disorders, our results point to an important role for RAD51-mediated homologous recombination in neurodevelopment, in addition to DNA repair and cancer susceptibility.
- Published
- 2015
- Full Text
- View/download PDF